Gastrointestinal disorders are common in canine and feline patients and diagnosis and treatment require up-to-date knowledge of this expanding field. This book is designed to be both a practical companion for veterinarians in general practice and a concise, yet comprehensive, resource for veterinary students, interns, and residents.

The book is structured into different sections. The first section covers diagnostic tools and provides a rational approach to common clinical problems. In the second section, diseases affecting each portion of the gastrointestinal tract are discussed in detail.
Gastrointestinal disorders are common in canine and feline patients and diagnosis and treatment require up-to-date knowledge of this expanding field. This book is designed to be both a practical companion for veterinarians in general practice and a concise, yet comprehensive, resource for veterinary students, interns, and residents.

The book is structured into different sections. The first section covers diagnostic tools and provides a rational approach to common clinical problems. In the second section, diseases affecting each portion of the gastrointestinal tract are discussed in detail.
Small Animal Gastroenterology

with

Karin Allenspach · Roger M. Batt · Thomas Bilzer · Andrea Boari · John V. DeBiasio · Olivier Dossin · Frédéric P. Gaschen · Lorrie Gaschen · Alexander J. German · Edward J. Hall · Carolyn J. Henry · Johannes Hirschberger · Ann E. Hohenhaus · Albert E. Jergens · Michael S. Leib · Terry L. Medinger · Lisa E. Moore · Reto Neiger · Keith P. Richter · Jan Rothuizen · Craig G. Ruaux · H. Carolien Rutgers · Jan S. Suchodolski · David C. Twedt · Shelly L. Vaden · Robert J. Washabau · Elias Westermarck · Michael D. Willard · David A. Williams
Contents

Authors X
Abbreviations XIII
Preface XVII

Part I Diagnosis of Gastrointestinal Disorders

1 Diagnostic Tools

1.1 Clinical History 3
1.1.1 Introduction 3
1.1.2 History of specific gastrointestinal signs 3
1.1.2.1 Dysphagia and regurgitation 3
1.1.2.2 Gagging 5
1.1.2.3 Vomiting 5
1.1.2.4 Retching 6
1.1.2.5 Abdominal pain 6
1.1.2.6 Other stool abnormalities 6
1.1.2.7 Flatulence and borborygmus 7
1.1.2.8 Dyschezia 8
1.1.2.9 Constipation 8
1.1.2.10 Fecal incontinence 8
1.1.2.11 Anal pruritus 8
1.1.2.12 Abdominal pain 8
1.1.3 Dietary history 8
1.2 Physical Examination 9
1.2.1 Introduction 9
1.2.2 General physical examination 10
1.2.2.1 Skeletal growth and development 10
1.2.2.2 Body condition 10
1.2.2.3 Mental status 10
1.2.2.4 Abnormalities in posture and locomotion 10
1.2.2.5 Mucous membranes 11
1.2.2.6 Peripheral lymph nodes 11
1.2.2.7 Skin and subcutaneous tissue 11
1.2.2.8 Body temperature 12
1.2.2.9 Pulse rate 12
1.2.2.10 Respiratory rate 12
1.2.3 Examination of the gastrointestinal tract 13
1.3 Diagnostic Imaging 16
1.3.1 Introduction 16
1.3.2 Oropharynx 17
1.3.2.1 Structural abnormalities 18
1.3.2.2 Functional Disorders 19
1.3.3 Esophagus 22
1.3.3.1 Generalized esophageal dilation 22
1.3.3.2 Segmental esophageal dilation 25
1.3.4 Stomach 25
1.3.4.1 Gastric dilation and volvulus 25
1.3.4.2 Gastric causes of chronic vomiting 27
1.3.4.3 Diagnosis of delayed gastric emptying 28
1.3.5 Small intestine 28
1.3.5.1 Ileus 28
1.3.5.2 Partial obstructions 29
1.3.5.3 Complete obstructions 32
1.3.5.4 Functional ileus 32
1.3.5.5 Detecting ileus with ultrasound 33
1.3.5.6 Complicated ileus 33
1.3.5.7 Chronic diarrhea 35
1.3.5.8 Diffuse bowel wall infiltration 35
1.3.5.9 Gastrointestinal hemodynamic assessment with Doppler ultrasound 36
1.3.6 Large intestine 36
1.3.7 Liver and biliary tract 38
1.3.7.1 Hepatic parenchymal disease 38
1.3.7.2 Non-obstructive biliary tract disease 41
1.3.7.3 Obstructive disease 43
1.3.7.4 Interventinal procedures of the liver and biliary system 43
1.3.7.5 Pancreas 44
1.3.7.6 Pancreatitis 44
1.3.7.7 Pancreatic neoplasia 45
1.4 Laboratory Tests 48
1.4.1 Laboratory assessment of gastric disease 48
1.4.1.1 Introduction 48
1.4.1.2 Evaluation for parasitic infection 48
1.4.1.3 Sucose permeability testing 48
1.4.1.4 Minimally-invasive markers for gastric disease 48
1.4.1.5 Analysis of gastric juice 49
1.4.1.6 Evaluation of gastric emptying time 49
1.4.2 Laboratory tests for the diagnosis of intestinal disorders 50
1.4.2.1 Introduction 50
1.4.2.2 Assessment of serum cobalamin and folate concentrations 50
1.4.2.3 Assessment of gastrointestinal protein loss 53
1.4.2.4 Assessment of intestinal absorptive capacity and barrier function 54
1.4.3 Laboratory tests for the diagnosis of liver disease 56
1.4.3.1 Introduction 56
1.4.3.2 Routine hematological testing, urinalysis, and fecal examination 56
1.4.3.3	Analysis of ascites fluid	57
1.4.3.4	Classical serum parameters	57
1.4.3.5	Other serum markers	61
1.4.3.6	Abnormalities of coagulation parameters	62
1.4.3.7	Other hepatic function tests	62
1.4.3.8	Species differences	63
1.4.4	Laboratory tests for the diagnosis of exocrine pancreatic disorders	64
1.4.4.1	Introduction	64
1.4.4.2	Pancreatitis	64
1.4.4.3	Exocrine pancreatic insufficiency (EPI)	65
1.4.5	Molecular-genetics-based laboratory tests	67
1.4.5.1	Introduction	67
1.4.5.2	Test Development	68
1.4.5.3	Diseases of the esophagus and stomach	69
1.4.5.4	Intestinal diseases	69
1.4.5.5	Pancreatic disease	70
1.4.5.6	Liver disease	70
1.5	Endoscopy	72
1.5.1	Introduction	72
1.5.2	Indications	72
1.5.3	Basic principles of endoscopy	72
1.5.3.1	Choice of endoscopes	72
1.5.4	Esophagogastrroduodenoscopy	73
1.5.4.1	Preparation and anesthesia	73
1.5.4.2	Technique	73
1.5.4.3	Gastroendoscopy	73
1.5.5	Colonoscopy	75
1.5.5.1	Preparation and anesthesia	75
1.5.5.2	Technique	75
1.5.6	Proctoscopy	76
1.5.7	Diagnostic procedures	76
1.5.7.1	Biopsy	76
1.5.7.2	Mounting and handling tissue samples	79
1.5.8	Appearance of the upper gastrointestinal tract	80
1.5.8.1	Abnormal findings	80
1.5.9	Interventional procedures	85
1.5.9.1	Foreign body removal	85
1.5.9.2	Percutaneous gastroscopy tube	87
1.5.9.3	Dilatation of esophageal strictures	87
1.5.9.4	Electrocautery techniques	88
1.6	Diagnostic Laparoscopy	89
1.6.1	Introduction	89
1.6.2	Indications	89
1.6.3	Laparoscopic equipment and technique	90
1.6.3.1	Basic equipment	90
1.6.3.2	Procedural considerations	91
1.6.4	Biopsy techniques	91
1.6.4.1	Liver biopsy	91
1.6.4.2	Pancreatic Biopsy	93
1.6.4.3	Intestinal biopsy	94
1.6.4.4	Other biopsy techniques	95
1.6.5	Ancillary procedures	95
1.6.5.1	Cholecystocentesis and cholecystography	95
1.6.5.2	Portography	95
1.6.5.3	Other procedures	96
1.6.6	Complications of laparoscopy	96
1.7	Cytology	97
1.7.1	Introduction	97
1.7.2	Technique	97
1.7.3	Liver	97
1.7.3.1	Normal liver cells	97
1.7.3.2	Hyperplasia	99
1.7.3.3	Inflammation	99
1.7.3.4	Neoplasia	99
1.7.3.5	Other abnormalities of the liver	99
1.7.3.6	Bile	101
1.7.4	Pancreas	101
1.7.5	Stomach and intestines	102
1.8	Histopathology	104
1.8.1	Introduction	104
1.8.2	Types of gastrointestinal biopsies	104
1.8.2.1	Endoscopic biopsies	104
1.8.2.2	Full-thickness biopsies	104
1.8.2.3	Needle biopsies	105
1.8.2.4	Brushing and curettage samples	105
1.8.3	Advantages and disadvantages of different biopsy techniques	105
1.8.4	Tissue handling and processing	105
1.8.5	Interpretation and misinterpretation of GI tract biopsies	106
1.9	Assessment of Gastrointestinal Motility	108
1.9.1	Disorders of gastrointestinal motility	108
1.9.2	Methods for assessing gastrointestinal motility	109
1.9.2.1	Survey radiography	109
1.9.2.2	Contrast radiography – liquid barium	109
1.9.2.3	Contrast radiography – barium meal	109
1.9.2.4	Contrast radiography – BIPS	109
1.9.2.5	Ultrasonography	109
1.9.2.6	Nuclear scintigraphy	109
1.9.2.7	Tracer studies	110
1.9.2.8	Manometry	110
1.9.2.9	Functional MRI	110

2 | Clinical Evaluation of Dogs and Cats with Specific Clinical Signs |

2.1 | Clinical Evaluation of Patients with Acute Signs of Gastrointestinal Disease |
2.1.1	Introduction	115
2.1.2	Diagnostic evaluation of vomiting	115
2.1.2.1	Vomiting versus regurgitation	115
2.1.2.2	The vomiting reflex	115
2.1.2.3	Etiology of vomiting	115
2.1.2.4	History and physical examination	115
Part II Diseases of the Gastrointestinal Tract

3 Esophagus

3.1 Anatomy .. 139
3.2 Physiology 140
3.3 Diseases of the Esophagus 140
 3.3.1 Cricopharyngeal achalasia 140
 3.3.2 Esophageal stricture 141
 3.3.3 Esophageal foreign bodies 142
 3.3.4 Esophageal diverticula 145
 3.3.5 Airway-esophageal fistula 146
 3.3.6 Gastroesophageal intussusception 148
 3.3.7 Hiatal hernia 147
 3.3.8 Megasphagus 146
 3.3.10 Vascular ring anomalies 148
 3.3.11 Neoplastic conditions of the esophagus .. 151

4 Stomach

4.1 Introduction 155
4.2 Anatomy 155
4.3 Gastric physiology 155
 4.3.1 Gastric glands 155
 4.3.2 Gastric secretion 156
 4.3.3 The gastric mucosal barrier 158
 4.4 Diseases of the Stomach 159
 4.4.1 Gastritis 159
 4.4.1.1 Acute gastritis 159
 4.4.1.2 Chronic gastritis 161
 4.4.1.2.1 Lymphoplasmacytic gastritis 161
 4.4.1.2.2 Eosinophilic gastritis 162
 4.4.1.2.3 Hyperplastic gastritis 162
 4.4.1.2.4 Atrophic gastritis 162
 4.4.1.2.5 Helicobacter infection 162
 4.4.1.2.6 Parastatic gastritis 165
 4.4.1.2.7 Treatment of chronic gastritis 166
 4.4.1.3 Gastric ulceration 166
 4.4.2 Gastric dilation-volvulus 169
 4.4.3 Mortality disorders 171
 4.4.4 Neoplastic conditions of the stomach 176

5 Small Intestine

5.1 Anatomy 181
 5.1.1 Introduction 181
 5.1.2 Gross anatomy of the intestinal tract 181
 5.1.2.1 Anatomical features of the small intestine .. 181
 5.1.2.1.1 Increasing available surface area 181
 5.1.2.1.2 Microscopic anatomy of the intestinal tract 182
 5.1.2.1.3 Spatial variation in intestinal structure 182
 5.2 Intestinal Physiology 183
 5.2.1 Introduction 183
 5.2.2 Secretion, digestion, and absorption: .. 183
 function of the villus 183
 Regulation of secretion, absorption, and motility: gastrointestinal hormones 184
 5.2.3 Gut-associated lymphoid tissue and the immune system 185

4.4.1 Gastritis 159
 4.4.1.1 Acute gastritis 159
 4.4.1.2 Chronic gastritis 161
 4.4.1.2.1 Lymphoplasmacytic gastritis 161
 4.4.1.2.2 Eosinophilic gastritis 162
 4.4.1.2.3 Hyperplastic gastritis 162
5.3 Small Intestinal Disease

5.3.1 Introduction .. 187
5.3.2 Infectious causes of small intestinal disease 187
5.3.3 Viral infections 187
5.3.4 Canine parvovirus enteritis 187
5.3.5 Canine distemper virus infection 188
5.3.6 Short bowel syndrome 199
5.3.7 Motility disorders 199
5.3.8 Alterations in the small intestinal microflora (Small intestinal bacterial overgrowth) 202
5.3.9 Protein-losing enteropathies 207
5.3.10 Neoplastic diseases of the small intestines 211

6 Large Intestine

6.1 Introduction ... 217
6.2 Anatomy .. 217
6.3 Physiology .. 218
6.3.1 Motility .. 218
6.3.2 Water and electrolyte transport 219
6.3.3 Mucus secretion 220
6.3.4 Colonic microflora 220
6.3.5 Immune function 220
6.4 Diseases of the Large Intestine 221
6.4.1 Whipworms .. 221
6.4.2 Colitis ... 223
6.4.2.1 Histiocytic ulcerative colitis of Boxers 223
6.4.2.2 Clostridium perfrangens enterotoxosis 223
6.4.2.3 Tritrichomonas foetus infection 225
6.4.3 Irritable bowel syndrome 226
6.4.4 Fiber-responsive large bowel diarrhea 227
6.4.5 Feline megacolon 230
6.4.6 Neoplastic diseases of the large intestines 236

7 Liver

7.1 Anatomy .. 241
7.1.1 Biliary system ... 241
7.1.2 Blood supply .. 242
7.1.3 Microanatomy ... 243
7.2 Physiology .. 244
7.3 Diagnostic approach to patients with suspected liver disease .. 245
7.3.1 Prevalence of liver disease 246
7.3.2 Symptoms associated with liver diseases 246
7.3.3 Physical examination 247
7.3.4 Diagnostic tests for liver disease 247
7.3.5 Liver biopsy .. 248
7.3.5.1 General considerations 248
7.3.5.2 Biopsy techniques 249
7.3.5.2.1 True-cut biopsy needle 249
7.3.5.2.2 The Menghini biopsy needle 249
7.3.5.2.3 Fine needle aspiration 249
7.3.5.3 Surgical wedge biopsy 249
7.3.5.4 Gall bladder aspiration 250
7.4 Complications of liver disease 250
7.4.1 Ascites .. 250
7.4.2 Jaundice .. 250
7.4.3 Hepatic encephalopathy 251
7.4.3.1 Management of hepatic encephalopathy 254
7.4.4 Coagulopathies .. 254
7.4.5 Polyuria and polydipsia 255
7.5 Liver diseases of the dog 255
7.5.1 Parenchymal liver diseases of the dog 255
7.5.1.1 Canine hepatitis .. 255
7.5.1.1.1 Acute Hepatitis .. 255
7.5.1.2 Leptospirosis .. 256
7.5.1.3 Chronic hepatitis and hepatic cirrhosis 257
7.5.1.4 Chronic hepatitis due to copper storage in the liver 259
7.5.1.5 Lobular disecting hepatitis 261
7.5.1.6 Non Specific reactive hepatitis 261
7.5.2 Parenchymal changes of the liver during systemic disease .. 262
7.5.2.1 Steroid hepatoapthy 262
7.5.2.2 Hepatic steatitis in diabetes melitus 262
7.5.2.3 Hypoxic liver damage 263
7.5.2.4 Amyloidosi .. 263
7.5.3 Vascular diseases of the liver 263
7.5.3.1 Congenital portosystemic vascular anomalies 263
7.5.3.2 Hepatic congestion ... 266
7.5.3.3 Primary portal vein hypoplasia 266
7.5.3.4 Portal vein thrombosis ... 267
7.5.3.5 Arteriovenous fistulas ... 268
7.5.4 Diseases of the biliary tract ... 269
7.5.4.1 Cholecystitis ... 269
7.5.4.2 Biliary duct or gall bladder rupture 269
7.5.4.3 Cystic liver disease ... 269
7.5.5 Neoplastic conditions of the liver 270
7.5.5.1 Hepatocellular carcinoma and adenoma 270
7.5.5.2 Hemangiosarcoma .. 271
7.5.5.3 Malignant lymphoma ... 271
7.5.5.4 Bile duct carcinoma ... 272
7.6 Liver diseases in the cat .. 272
7.6.1 Parenchymal liver diseases in cats 272
7.6.1.1 Hepatic lipidosis ... 272
7.6.1.2 Acute toxic hepatopathy 274
7.6.1.3 Hepatopathy due to infectious peritonitis (FIP) 274
7.6.1.4 Hepatic changes due to hyperthyroidism 274
7.6.1.5 Nonspecific reactive hepatitis and amyloidosis 275
7.6.2 Vascular liver diseases in cats 275
7.6.2.1 Congenital portosystemic shunt 275
7.6.3 Diseases of the biliary system in cats 275
7.6.3.1 Neutrophilic cholangitis 276
7.6.3.2 Lymphocytic cholangitis 276
7.6.3.3 Extrahepatic bile duct obstruction (EBDO) 278
7.6.4 Neoplasia .. 278

8 Exocrine Pancreas

8.1 Anatomy ... 283
8.2 Physiology ... 284
8.3 Diseases of the exocrine pancreas 285
8.3.1 Pancreatitis ... 285
8.3.2 Exocrine pancreatic insufficiency 294
8.3.3 Exocrine pancreatic neoplasia 299
8.3.4 Rare diseases of the exocrine pancreas 301
8.3.4.1 Pancreatic pseudocyst 301
8.3.4.2 Pancreatic abscess ... 301
8.3.4.3 Pancreatic parasites .. 302
8.3.4.4 Pancreatic bladder ... 302
8.3.4.5 Pancreatolithiasis ... 302
8.3.4.6 Pancreatic nodular hyperplasia 302

9 Diseases that affect more than one Organ of the Gastrointestinal Tract

9.1 Adverse Reactions to Food – Allergy versus Intolerance 307
9.1.1 Introduction .. 307
9.1.2 Terminology ... 307
9.1.3 Etiopathogenesis of food allergy 307
9.1.4 Food allergies .. 308
9.2 Inflammatory Bowel Disease ... 312
9.2.1 Introduction .. 312
9.2.2 Common principles of IBD 313
9.2.2.1 Etiology and pathogenesis 313
9.2.2.2 Clinical presentation ... 315
9.2.2.3 Diagnosis .. 316
9.2.2.4 Treatment .. 320
9.2.3 Lymphoplasmacytic enteritis (LPE) 324
9.2.4 Lymphoplasmacytic colitis (LPC) 324
9.2.5 Basenji enteropathy .. 325
9.2.6 Familial PLE and PLN in Soft-coated Wheaten Terriers 325
9.2.7 Eosinophilic enteritis (EE) 326
9.2.8 Granulomatous enteritis ... 326
9.2.9 Histiocytic ulcerative colitis (HUC) 327
9.2.10 Proliferative enteritis ... 327
9.3 Gastrointestinal Lymphoma .. 329
9.3.1 Feline gastrointestinal lymphoma 329
9.3.2 Canine gastrointestinal lymphoma 335
9.4 Neuroendocrine Tumors of the Gastrointestinal Tract 337
9.4.1 Introduction .. 337
9.4.2 Insulinoma .. 337
9.4.3 Gastrinoma ... 344
9.4.4 Glucagonoma .. 347
9.4.5 Pancreatic polypeptidoma ... 349
9.4.6 Carcinoids .. 349
9.4.7 Other neuroendocrine tumors of the gastrointestinal tract 350

Subject Index ... 352
Authors

Karin Allenspach Dr. med. vet., FVH, PhD, DECVIM-CA
(Lecturer in Small Animal Internal Medicine)
Veterinary Clinical Sciences
Royal Veterinary College
University of London
Hawkshead Lane
North Mymms
Herts., AL9 7TA
UK

Olivier Dossin DVM, PhD, DECVIM-CA
(Internal Medicine)
Assistant Professor of Small Animal Internal Medicine
University of Illinois at Urbana-Champaign
Department of Veterinary Clinical Medicine
College of Veterinary Medicine
1008 Hazelwood Drive
Urbana, IL 61802
USA

Roger M Batt BVSc, MSc, PhD, FRCVS, DECVIM-CA
Professor
Batt Laboratories Ltd.
University of Warwick Science Park
The Venture Centre
Sir William Lyons Road
Coventry CV4 7EZ
UK

Frédéric P. Gaschen Dr. med. vet., Dr. habil., DACVIM
DECVIM-CA
Associate Professor and Section Chief,
Companion Animal Medicine
Veterinary Clinical Sciences
School of Veterinary Medicine
Louisiana State University
Baton Rouge, LA 70803
USA

Thomas Bilzer Dr. med. vet., Dr. habil.
Professor
Institut für Neuropathologie
Henrihn-Heine-Universität Düsseldorf
Moorenstr. 5
40225 Düsseldorf
Germany

Lorrie Gaschen DVM, Dr. med. vet., PhD, Dr. habil.,
DECVDI
Associate Professor
Veterinary Clinical Sciences
School of Veterinary Medicine
Louisiana State University
Baton Rouge, LA 70803
USA

Andrea Boari DVM
Professor and Head of Department
Department of Veterinary Clinical Sciences
University of Teramo
Viale f. Crispi 212
64100 Teramo
Italy

Alexander J. German BVSc (Hons), PhD, certsam,
DECVIM-CA, MRCVS
Royal Canin Associate Professor in Small Animal Medicine
Department of Veterinary Clinical Sciences
University of Liverpool
Small Animal Teaching Hospital
Chester High Road, Neston, Wirral, CH64 7TE
UK

John V. DeBiasio DVM
Resident in Small Animal Internal Medicine
Department of Veterinary Small Animal Clinical Sciences
College of Veterinary Medicine
Texas A&M University
College Station, TX
USA

Edward J Hall MA, VetMB, PhD, DECVIM-CA
Professor of Small Animal Internal Medicine
University of Bristol
Department of Clinical Veterinary Science
Langford House
Langford
Bristol BS40 5DU
UK
Carolyn J. Henry DVM, MS, DACVIM (Oncology)
Associate Professor of Oncology
900 E. Campus Drive
Department of Veterinary Medicine and Surgery
University of Missouri
Columbia, MO 65211
USA

Johannes Hirschberger, Dr. med. vet., Dr. habil.,
DECVIM-CA (Internal Medicine), DECVIM-CA (Oncology), Hon. DECVCP
Professor
Medizinische Kleintierklinik
Clinic of Small Animal Medicine
Universität München
Veterinärstr. 13
80539 München
Germany

Ann E. Hohenhaus DVM, DACVIM
(Oncology and Internal Medicine)
Chairman, Department of Medicine
The Animal Medical Center
510 East 62nd Street, NY, NY 10065
USA

Albert E. Jergens DVM, PhD, DACVIM
Professor and Staff Internist
Department of Veterinary Clinical Sciences
CVM, Iowa State University
Ames, IA, 50010
USA

Michael S. Leib DVM, MS, DACVIM
C.R. Roberts Professor
Virginia Maryland Regional College of Veterinary Medicine
Virginia Tech
Blacksburg, VA 24061
USA

Terry L. Medinger DVM, MS, DACVIM (SA)
Department Head Internal Medicine
VCA Aurora Animal Hospital
2600 W. Galena Blvd.
Aurora, IL 60506
USA

Lisa E. Moore DVM, DACVIM
(Small Animal Internal Medicine)
Staff Internist
Affiliated Veterinary Specialists
9905 South US Highway 17-92
Maitland, FL 32751
USA

Reto Neiger Dr. med. vet., PhD, DACVIM, DECVIM-CA
Professor of Small Animal Internal Medicine
Small animal clinic
Justus-Liebig-University
Frankfurter Straße 126
35392 Gießen
Germany

Keith P. Richter DVM, DACVIM
Hospital Director and Staff Internist
Veterinary Specialty Hospital of San Diego
10435 Sorrento Valley Road
San Diego, CA 92121
USA

Jan Rothuizen DVM, PhD
Professor of Internal Medicine
Chair, Department of Clinical Sciences of Companion Animals
Faculty of Veterinary Medicine
University Utrecht
P.O. Box 80.154, 3508 TD Utrecht
The Netherlands

Craig G. Ruaux BVSc, PhD, MACVSC
Research Associate
Dept of Clinical Sciences
Magruder Hall, College of Veterinary Medicine
Oregon State University
Corvallis, Oregon 97331
USA

H. Carolien Rutgers DVM, MS, MR.CVS, DACVIM, DECVIM-CA, DSAM
Consultant for Scientific Writing
4 Prestwood Gate
Sandridge Road
St Albans
Hertfordshire AL1 4AE
UK
Jörg M. Steiner Dr. med. vet., PhD, DACVIM, DECVIM-CA
Associate Professor of Small Animal Internal Medicine and Director of the GI Lab
Gastrointestinal Laboratory
Department of Small Animal Clinical Sciences
College of Veterinary Medicine and Biomedical Sciences
Texas A&M University
4474 TAMU
College Station, TX 77843-4474
USA

Jan S. Suchodolski Dr. med. vet., PhD
Research Assistant Professor & Associate Director
Gastrointestinal Laboratory
Department of Small Animal Clinical Sciences
College of Veterinary Medicine and Biomedical Sciences
Texas A&M University
4474 TAMU
College Station, TX 77843-4474
USA

David C. Tweedt DVM, DACVIM
Professor
Department of Clinical Sciences
College of Veterinary Medicine and Biomedical Sciences
Colorado State University
Fort Collins, CO 80523
USA

Shelly L. Vaden DVM, PhD, DACVIM
Professor, Internal Medicine
North Carolina State University
College of Veterinary Medicine
4700 Hillsborough St., Raleigh, NC 27606
USA

Robert J. Washabau VMD, PhD, DACVIM
Professor of Medicine and Department Chair
Department of Veterinary Clinical Sciences
College of Veterinary Medicine
1352 Boyd Avenue
University of Minnesota
St. Paul, Minnesota 55108
USA

Elias Westermarck DVM, PhD, DECVIM-CA
Professor of Small Animal Internal Medicine
Tammitie 1
02270 Espoo
Finland

Michael D. Willard DVM, MS, DACVIM
Professor of Small Animal Internal Medicine
Department of Small Animal Clinical Sciences
College of Veterinary Medicine and Biomedical Sciences
Texas A&M University
4474 TAMU
College Station, TX 77843-4474
USA
2806 Rayado Court North
College Station
TX 77845
USA

David A. Williams MA, vetmb, PhD, DACVIM, DECVIM-CA
Professor and Department Head
Veterinary Clinical Medicine
1008 West Hazelwood Drive
Urbana IL 61802
USA
Abbreviations

\(^{13}\)C-OBT \(^{13}\)C-octanoic acid breath test
5-ASA 5-aminosalicylic acid
5-HT\(_3\) 5-hydroxytryptamine
6MP 6-mercaptopurine
\(\alpha\)-PI \(\alpha\)-proteinase inhibitor
AC adenocarcinoma
ACh acetylcholine
ACTH adrenocorticotropic hormone
AgNOR argyrophilic nucleolar organizer region
ALP alkaline phosphatase
ALT alanine aminotransferase
APUDoma tumors of cells of the amine precursor
 uptake and decarboxylation system
ARD antibiotic-responsive diarrhea
AST aspartate aminotransferase
AT-III antithrombin-III
BIPS barium-impregnated polyethylene
 spheres
BUN blood urea nitrogen
BW body weight
BZ benzodiazepine
CAV1 canine adenovirus-1
CBC complete blood count
CCK cholecystokinin
CCNU lomustine
CD Crohn’s disease
cDNA complementary DNA
CDV canine distemper virus
CFU colony-forming units
CIBDAI canine inflammatory bowel disease
 activity index
CK creatinine kinase
CLO Camelid-like organism
CNS central nervous system
COX cyclooxygenase
CPE Clostridium perfringens enterotoxin
cPL canine pancreatic lipase
CPRE canine pancreatic lipase immunoreactivity
CPSS congenital portosystemic shunt
CPV canine parvovirus
CRI constant rate infusion
CRT capillary refill time
CRTLZ chemoreceptor trigger zone
CSF cerebrospinal fluid
CT computed tomography
CvP cyclophosphamide, vincristine, and prednisone
Da Dalton
dDAVP desmopressin acetate
DIC disseminated intravascular coagulation
DOB dose over baseline
DSH domestic shorthair cat
EBO extrahepatic bile duct obstruction
ECG electrocardiogram
ECL enterochromaffin-like
eEd equilibrium dialysis
EE eosinophilic enteritis
EGF epidermal growth factor
ELISA enzyme-linked immunosorbent assay
EPEC enteropathogenic E. coli
EPI exocrine pancreatic insufficiency
ERCP endoscopic retrograde cholangiopancreatography
ETEC enterotoxigenic E. coli
FeCoV feline coronavirus
FeLV feline leukemia virus
FIP feline infectious peritonitis
FIV feline immunodeficiency virus
FNAA fine needle aspiration
FO foreign object
FOS fructo-oligosaccharides
FPA fecal proteolytic activity
FPV feline parvovirus
FRLBD fiber-responsive large bowel diarrhea
fTLI feline trypsin-like immunoreactivity
GABA gamma-aminobutyric acid
GALT gut-associated lymphoid tissue
G-CSF granulocyte colony stimulating factor
GDV gastric dilatation-volvulus
GER gastroesophageal reflux
GERD gastroesophageal reflux disease
GES gastroesophageal sphincter
GLO gastrics Helicobacter-like organisms
GhRH growth hormone releasing hormone
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI</td>
<td>gastrointestinal</td>
<td>gastrointestinal tract</td>
</tr>
<tr>
<td>GIT</td>
<td>gastrointestinal tract</td>
<td></td>
</tr>
<tr>
<td>GN</td>
<td>glomerulonephritis</td>
<td></td>
</tr>
<tr>
<td>GSE</td>
<td>gluten-sensitive enteropathy</td>
<td></td>
</tr>
<tr>
<td>H&E</td>
<td>hematoxylin and eosin</td>
<td></td>
</tr>
<tr>
<td>H_{2}-RA</td>
<td>histamin-receptor antagonists</td>
<td></td>
</tr>
<tr>
<td>HAS</td>
<td>hemangiosarcoma</td>
<td></td>
</tr>
<tr>
<td>HE</td>
<td>hepatic encephalopathy</td>
<td></td>
</tr>
<tr>
<td>HGE</td>
<td>hemorrhagic gastroenteritis</td>
<td></td>
</tr>
<tr>
<td>HGF</td>
<td>hepatocyte growth factor</td>
<td></td>
</tr>
<tr>
<td>HLA</td>
<td>human leukocyte antigen</td>
<td></td>
</tr>
<tr>
<td>Htc</td>
<td>hematocrit</td>
<td></td>
</tr>
<tr>
<td>HUC</td>
<td>histiocytic ulcerative colitis</td>
<td></td>
</tr>
<tr>
<td>IBD</td>
<td>inflammatory bowel disease</td>
<td></td>
</tr>
<tr>
<td>IBS</td>
<td>irritable bowel syndrome</td>
<td></td>
</tr>
<tr>
<td>IEL</td>
<td>intraepithelial lymphocyte</td>
<td></td>
</tr>
<tr>
<td>IF</td>
<td>intrinsic factor</td>
<td></td>
</tr>
<tr>
<td>IFA</td>
<td>immunofluorescence assay</td>
<td></td>
</tr>
<tr>
<td>IFCR</td>
<td>intrinsic factor-cobalamin receptor</td>
<td></td>
</tr>
<tr>
<td>IFN-γ</td>
<td>interferon-γ</td>
<td></td>
</tr>
<tr>
<td>IGF</td>
<td>insulin-like growth factor</td>
<td></td>
</tr>
<tr>
<td>IHC</td>
<td>immunohistochemistry</td>
<td></td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
<td></td>
</tr>
<tr>
<td>KCS</td>
<td>keratoconjunctivitis sicca</td>
<td></td>
</tr>
<tr>
<td>KIT</td>
<td>CD117</td>
<td></td>
</tr>
<tr>
<td>L/R ratio</td>
<td>lactulose/rhamnose ratio</td>
<td></td>
</tr>
<tr>
<td>LES</td>
<td>lower esophageal sphincter</td>
<td></td>
</tr>
<tr>
<td>LI</td>
<td>large intestinal</td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>lamina propria</td>
<td></td>
</tr>
<tr>
<td>LPC</td>
<td>lymphocytic-plasmacytic colitis</td>
<td></td>
</tr>
<tr>
<td>LPE</td>
<td>lymphocytic-plasmacytic enteritis</td>
<td></td>
</tr>
<tr>
<td>LSA</td>
<td>lymphosarcoma</td>
<td></td>
</tr>
<tr>
<td>MAb</td>
<td>monoclonal antibody</td>
<td></td>
</tr>
<tr>
<td>MALAT</td>
<td>mucosal associated lymphoid tissue</td>
<td></td>
</tr>
<tr>
<td>MCT</td>
<td>mast cell tumors</td>
<td></td>
</tr>
<tr>
<td>MCT</td>
<td>medium-chain triglyceride</td>
<td></td>
</tr>
<tr>
<td>MEN</td>
<td>multiple endocrine neoplasia</td>
<td></td>
</tr>
<tr>
<td>MER</td>
<td>maintenance energy requirement</td>
<td></td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
<td></td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
<td></td>
</tr>
<tr>
<td>MST</td>
<td>median survival time</td>
<td></td>
</tr>
<tr>
<td>MVD</td>
<td>microvascular dysplasia</td>
<td></td>
</tr>
<tr>
<td>NET</td>
<td>neuroendocrine tumor</td>
<td></td>
</tr>
<tr>
<td>NK_{1}</td>
<td>neurokinin</td>
<td></td>
</tr>
<tr>
<td>NME</td>
<td>necrolytic migratory erythema</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
<td></td>
</tr>
<tr>
<td>NPO</td>
<td>nothing per os</td>
<td></td>
</tr>
<tr>
<td>NSAID</td>
<td>non-steroidal anti-inflammatory drug</td>
<td></td>
</tr>
<tr>
<td>NTZ</td>
<td>nitazoxanide</td>
<td></td>
</tr>
<tr>
<td>PAA</td>
<td>pancreatic acinar atrophy</td>
<td></td>
</tr>
<tr>
<td>PABA</td>
<td>para-aminobenzoic acid</td>
<td></td>
</tr>
<tr>
<td>PAFANT</td>
<td>platelet activating factor antagonist</td>
<td></td>
</tr>
<tr>
<td>pANCA</td>
<td>perinuclear antineutrophilic antibodies</td>
<td></td>
</tr>
<tr>
<td>PAS</td>
<td>periodic acid Schiff</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
<td></td>
</tr>
<tr>
<td>PCV</td>
<td>packed cell volume</td>
<td></td>
</tr>
<tr>
<td>PEG</td>
<td>percutaneous endoscopic gastrostomy</td>
<td></td>
</tr>
<tr>
<td>PGE _{i}</td>
<td>prostaglandin E _{i}</td>
<td></td>
</tr>
<tr>
<td>P-gp</td>
<td>P-glycoprotein</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>pulsatility index</td>
<td></td>
</tr>
<tr>
<td>PIVKA</td>
<td>proteins induced by vitamin K antagonist</td>
<td></td>
</tr>
<tr>
<td>PLE</td>
<td>protein-losing enteropathy</td>
<td></td>
</tr>
<tr>
<td>PLI</td>
<td>pancreatic lipase immunoreactivity</td>
<td></td>
</tr>
<tr>
<td>PLN</td>
<td>protein-losing nephropathy</td>
<td></td>
</tr>
<tr>
<td>PO</td>
<td>per os</td>
<td></td>
</tr>
<tr>
<td>PPI</td>
<td>proton pump inhibitor</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>Peyer's patch</td>
<td></td>
</tr>
<tr>
<td>PSS</td>
<td>portosystemic shunt</td>
<td></td>
</tr>
<tr>
<td>PSTI</td>
<td>pancreatic secretory trypsin inhibitor</td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td>prothrombin time (i.e., one-stage prothrombin time)</td>
<td></td>
</tr>
<tr>
<td>PTT</td>
<td>partial thromboplastin time (i.e., activated partial thromboplastin time)</td>
<td></td>
</tr>
<tr>
<td>PU/PD</td>
<td>polydipsia</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>(quodque) every</td>
<td></td>
</tr>
<tr>
<td>Q-PCR</td>
<td>quantitative polymerase chain reaction</td>
<td></td>
</tr>
<tr>
<td>RAST</td>
<td>radio-allergosorbent test</td>
<td></td>
</tr>
<tr>
<td>RBC</td>
<td>red blood cell</td>
<td></td>
</tr>
<tr>
<td>Rl</td>
<td>resistive index</td>
<td></td>
</tr>
<tr>
<td>RIA</td>
<td>radioimmunoassay</td>
<td></td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
<td></td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcriptase polymerase chain reaction</td>
<td></td>
</tr>
<tr>
<td>SAF</td>
<td>sodium acetate / acetic acid / formaldehyde</td>
<td></td>
</tr>
<tr>
<td>SAME</td>
<td>S-adenosyl methionine</td>
<td></td>
</tr>
<tr>
<td>SBA</td>
<td>serum bile acids</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>small intestinal</td>
<td></td>
</tr>
<tr>
<td>SIBO</td>
<td>small intestinal bacterial overgrowth</td>
<td></td>
</tr>
<tr>
<td>SLE</td>
<td>secretory IgA</td>
<td></td>
</tr>
<tr>
<td>SNDO</td>
<td>systemic lupus erythematosus</td>
<td></td>
</tr>
<tr>
<td>SNSD</td>
<td>superficial necrolytic dermatitis</td>
<td></td>
</tr>
<tr>
<td>SNP</td>
<td>single nucleotide polymorphisms</td>
<td></td>
</tr>
<tr>
<td>SPF</td>
<td>specific pathogen free</td>
<td></td>
</tr>
<tr>
<td>spp.</td>
<td>species</td>
<td></td>
</tr>
<tr>
<td>SRS</td>
<td>somatostatin receptor scintigraphy</td>
<td></td>
</tr>
<tr>
<td>stt2</td>
<td>somatostatin receptor subtype 2</td>
<td></td>
</tr>
<tr>
<td>STEC</td>
<td>Shiga-toxin-producing E. coli</td>
<td></td>
</tr>
<tr>
<td>SUCA</td>
<td>serum unconjugated cholic acid</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>thyroxine</td>
<td></td>
</tr>
<tr>
<td>TAP</td>
<td>trypsinogen activation peptide</td>
<td></td>
</tr>
<tr>
<td>TFF</td>
<td>trefoil factor</td>
<td></td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor</td>
<td></td>
</tr>
<tr>
<td>Th1</td>
<td>T-helper cell, type 1</td>
<td></td>
</tr>
<tr>
<td>Th2</td>
<td>T-helper cell, type 2</td>
<td></td>
</tr>
<tr>
<td>THV</td>
<td>terminal hepatic veins</td>
<td></td>
</tr>
<tr>
<td>TLI</td>
<td>trypsin-like immunoreactivity</td>
<td></td>
</tr>
<tr>
<td>TNF</td>
<td>tumor necrosis factor</td>
<td></td>
</tr>
<tr>
<td>TPMT</td>
<td>thiopeurine methyltransferase</td>
<td></td>
</tr>
<tr>
<td>TRD</td>
<td>tylosin-responsive diarrhea</td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>total solids</td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>urinalysis</td>
<td></td>
</tr>
<tr>
<td>UC</td>
<td>ulcerative colitis</td>
<td></td>
</tr>
<tr>
<td>VIPoma</td>
<td>vasoactive intestinal polypeptidoma</td>
<td></td>
</tr>
<tr>
<td>VLDL</td>
<td>very low density lipoproteins</td>
<td></td>
</tr>
<tr>
<td>vWF</td>
<td>von Willebrand's factor</td>
<td></td>
</tr>
<tr>
<td>WSAVA</td>
<td>World Small Animal Veterinary Association</td>
<td></td>
</tr>
<tr>
<td>X / M ratio</td>
<td>xylose / 3-O-methylglucose ratio</td>
<td></td>
</tr>
<tr>
<td>ZSC</td>
<td>zinc sulfate concentration centrifugation</td>
<td></td>
</tr>
<tr>
<td>ZSFC</td>
<td>zinc sulfate fecal centrifugation</td>
<td></td>
</tr>
</tbody>
</table>
Dedication
This book is dedicated to Edward Anthony Kane.
While much still remains to be discovered, our understanding of gastrointestinal diseases in dogs and cats is steadily progressing. This book aims to highlight and consolidate recent advances.

It has taken several years to complete this project and I feel very fortunate to have worked with such a fantastic group of authors from around the globe. Our goal was a textbook that is both scientific and practical. To that end, in addition to discussing gastrointestinal diseases, diagnostic modalities and common clinical problems are discussed separately. We have tried to keep the material brief, but have provided pertinent references for readers wishing to evaluate the scientific evidence behind our observations.

We hope that this book helps you care for your patients, as ultimately, it was written for their benefit.

College Station, January 2008

Jörg M. Steiner
Part I

Diagnosis of Gastrointestinal Disorders
1 Diagnostic Tools

1.1 Clinical History

Olivier Dossin

1.1.1 Introduction

For most clinical problems, acquiring an accurate history can be as important as the clinical findings on physical examination. This is especially true for gastrointestinal disorders since they are usually expressed by clinical signs that cannot be observed during the clinical examination but are only reported by the owner. Therefore, the clinician must be skilled in obtaining the most accurate information by questioning the owner, which needs to be adapted to each case.

The steps and general guidelines for a good history are shown in the Tables 1.1 and 1.2. The observations of the owner, which are valuable, must be differentiated from his or her conclusion or interpretation, which may be misleading. For example, the terms vomiting and regurgitation may be used synonymously by the owner. In order to avoid confusion, it is essential to ask the owner to describe the patient's symptoms with his or her own words.

The signalment can be helpful as some age or breed predispositions (Tables 1.3 and 1.4) have been proposed for various gastrointestinal disorders. Also, a complete vaccination and drug history is important. Many drugs can induce gastrointestinal disturbances (e.g., NSAIDs can cause gastric ulcers and some antibiotic agents can be associated with diarrhea). Intolerance of anesthetic agents has been reported in patients with hepatic disorders, especially in those with portosystemic vascular anomalies.

Written records of the history are essential for the follow-up. As a general rule, everything that can be quantified during history taking should be, as this could be beneficial for the assessment of the severity of the problem or for the follow-up.

1.1.2 History of specific gastrointestinal signs

This section focuses on the main specific gastrointestinal signs, but other, less specific signs, such as anorexia, weight loss, or polyuria/polydipsia should also not be overlooked.

Table 1.1: Steps for taking a history in patients with gastrointestinal signs

<table>
<thead>
<tr>
<th>Parameters addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signalment</td>
</tr>
<tr>
<td>Chief complaint</td>
</tr>
<tr>
<td>Present medical history (including chronology and treatments)</td>
</tr>
<tr>
<td>Past medical history</td>
</tr>
<tr>
<td>Systems review</td>
</tr>
<tr>
<td>Current health status (including environment and dietary history)</td>
</tr>
</tbody>
</table>

Table 1.2: Guidelines for history acquisition in patients with gastrointestinal signs

<table>
<thead>
<tr>
<th>Guidelines for history acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>always begin with the chief complaint</td>
</tr>
<tr>
<td>start by asking broad questions</td>
</tr>
<tr>
<td>ask narrow questions (questions that can be answered with few words such as "yes", "no", or "I do not know") to confirm previous answers</td>
</tr>
<tr>
<td>try to use the owner’s words to avoid confusion about what the owner means</td>
</tr>
<tr>
<td>do not bombard the owner with questions</td>
</tr>
<tr>
<td>avoid combining questions</td>
</tr>
<tr>
<td>try to be reassuring when necessary</td>
</tr>
<tr>
<td>try to focus owner on the main points of the history</td>
</tr>
<tr>
<td>avoid categorical answers or judgments at the time of history collection</td>
</tr>
<tr>
<td>avoid external interruptions</td>
</tr>
</tbody>
</table>

1.1.2.1 Dysphagia and regurgitation

Dysphagia, which is defined as difficult or painful swallowing, can be classified as oral, pharyngeal, or esophageal. A good history can help the clinician to characterize the type of dysphagia. An owner questionnaire has been evaluated for characterization of dysphagia and was shown to be useful for exclusion of oral dysphagia and for the detection of pharyngeal dysphagia; however, it was less sensitive and specific for the assessment of esophageal dysphagia.

Oral dysphagia is characterized by the dropping of food, leaking of water, or abnormally interrupted chewing followed by rejection of food during the meal. Oral dysphagia is associated with disorders of the oral cavity, or with neuromuscular or osteo-articular disorders that impair normal chewing.

Abnormal, repeated swallowing efforts followed by peripran-
the hallmarks of pharyngeal dysphagia. The swallowing efforts are frequently associated with coughing or choking, and also with gagging at rest.

Esophageal dysphagia is associated with regurgitation, which is a passive process during which an undigested food bolus is thrown up. Sometimes, the food bolus has a cylindrical sausage shape and is covered with mucus (Figure 1.1). The time elapsed between the swallowing of the food and regurgitation of the bolus is variable but can be quite long, especially when severe esophageal dilation is present. The time period is usually shorter in patients with esophagitis, esophageal stenosis, or esophageal obstruction. In contrast to pharyngeal dysphagia, esophageal dysphagia is usually not associated with swallowing attempts. The history may also reveal respiratory signs such as coughing or nasal discharge, even as the primary complaint. A main task of history taking is to differentiate regurgitation from vomiting (Table 1.5).
1.1.2.2 Gagging

Gagging is defined as swallowing attempts without the presence of an alimentary bolus. Gagging can be a clinical manifestation of dysphagia in patients with pharyngeal disease, but it can also be associated with certain respiratory disorders of the nasal passages, larynx, trachea, or bronchi. Gagging can be associated with ptyalism or retching due to activation of the pharyngeal vomiting receptors.

1.1.2.3 Vomiting

Vomiting is not always linked to a primary gastrointestinal tract disorder. It must be differentiated from regurgitation and coughing as discussed before (Table 1.5). Vomiting is an active process with prodromal clinical signs and has three phases. The first phase, nausea, is frequently associated with hypersalivation, agitation or depression, yawning, lip licking, or repeated swallowing attempts. The second phase, retching, appears as a vomiting effort with abdominal wall contractions but without ejection of vomitus and can be associated with belching. The last phase, vomiting, is the forceful ejection of gastric contents, which is associated with very repetitive strong abdominal wall contractions.

Vomiting can be classified as acute or chronic, with chronic being defined as lasting for more than 3 weeks. Also, the content of the vomitus should be described, especially concerning the presence of food, parasites, or foreign bodies. Hematemesis is blood-tinged vomitus containing either fresh blood or digested blood, resembling coffee grounds. Hematemesis is associated with gastric or duodenal erosions and should always be considered as a sign of severe disease. However, small amounts of fresh blood are sometimes related to capillary rupture linked to the rise in venous pressure during vomition.

Gastritis may be associated with the vomiting of bile on an empty stomach or vomiting of food usually shortly (30 minutes to a few hours) after a meal. Vomitus consisting of large volumes of fluid can be associated with ileus, small intestinal obstruction, or hypersecretory states such as gastrinoma.

Table 1.4: Suspected or confirmed breed predispositions for gastrointestinal diseases in cats

<table>
<thead>
<tr>
<th>Breed</th>
<th>Disease predisposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abyssinian</td>
<td>Hepatic amyloidosis</td>
</tr>
<tr>
<td>Manx</td>
<td>Fecal incontinence, constipation</td>
</tr>
<tr>
<td>Oriental Shorthair</td>
<td>Hepatic amyloidosis</td>
</tr>
<tr>
<td>Persian</td>
<td>Portosystemic vascular anomalies</td>
</tr>
<tr>
<td>Siamese</td>
<td>Megaeosphagus, hepatic amyloidosis, pyloric stenosis, intestinal tumors</td>
</tr>
</tbody>
</table>

Table 1.5: Differentiation of regurgitation and vomiting

<table>
<thead>
<tr>
<th>Clinical sign</th>
<th>Regurgitation</th>
<th>Vomiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal effort</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Bolus in the neck</td>
<td>Possible</td>
<td>Absent</td>
</tr>
<tr>
<td>Prodromal signs (nausea, retching)</td>
<td>Absent (except rare salivation)</td>
<td>Present</td>
</tr>
<tr>
<td>Character of ejected material</td>
<td>Undigested</td>
<td>Can be partially digested (depending on time between ingestion and vomiting)</td>
</tr>
<tr>
<td>Bile absent</td>
<td>Bile can be present</td>
<td></td>
</tr>
<tr>
<td>pH variable</td>
<td>pH <5</td>
<td></td>
</tr>
<tr>
<td>Can be tubular shape</td>
<td>Variable shape</td>
<td></td>
</tr>
<tr>
<td>Time of ejection</td>
<td>Not reliable</td>
<td>Not reliable</td>
</tr>
<tr>
<td>Pain on swallowing</td>
<td>Can be present</td>
<td>Absent</td>
</tr>
</tbody>
</table>

Vomitus that smells like fecal material can sometimes be observed in patients with intestinal obstruction or chronic small intestinal bacterial overgrowth. Vomiting associated with bile that occurs in the morning can be due to duodenal reflux gastritis in small breeds. Vomitus containing food that is produced more than 8 to 12 hours after a meal is highly suggestive of a gastric emptying disorder. Projectile vomiting can be observed in patients with a gastric outlet obstruction, but may also simply reflect violent vomiting due to any cause.
Whenever possible, the number of vomiting episodes should be quantified. This is helpful to plan fluid therapy in patients with acute vomiting and also for the assessment of disease severity (canine IBD activity index; CIBDAI) in patients with chronic vomiting due to inflammatory bowel disease.

1.1.2.4 Retching

Retching is defined by repetitive efforts to vomit without any expulsion of vomitus. Diagnostically, retching should be approached like vomiting. However, in some instances, even a good history can not differentiate retching or the regurgitation of saliva or mucus from coughing and/or expectorations. In patients that present with acute retching and abdominal distension, gastric dilation/volvulus (GDV) should be ruled out immediately.

1.1.2.5 Diarrhea

Diarrhea is defined as the passage of feces that contain more water than normal, which increases daily fecal weight. As for vomiting, the first step is to classify whether the diarrhea is acute or chronic. The next step is to describe the fecal character by asking questions about any blood, foreign material, undigested food particles, or mucus in the feces (Figure 1.2). The color, volume, odor, and consistency of the feces might also be helpful, narrowing the list of differential diagnoses. For example, rancid smelling, large volume, grayish brown, and cow-patty stools may suggest exocrine pancreatic insufficiency or another condition associated with malabsorption (Figure 1.3). The number of bowel movements per day should also be quantified. The main concern is to localize the origin of the diarrhea either to the small or to the large intestine. The characteristics that may be helpful for localization of the cause of diarrheal disease are shown in Table 1.6. However, these characteristics are not absolute by any means and patients with clinical signs of large bowel disease may have more significant small bowel disease. The use of photographic fecal scoring charts may be helpful for the characterization of the diarrhea (Figure 2.4).

1.1.2.6 Other stool abnormalities

Melena is characterized by black and tarry stools (Figure 1.4) and is sometimes associated with diarrhea. Melena is a sign of the presence of blood in the GI tract. The blood usually comes from the GI tract itself, but it can be swallowed in patients that are bleeding into the respiratory tract. Melena is mostly associated with bleeding of the upper gastrointestinal tract, but the black color and tarry consistency are due to the transit of the blood through the intestinal tract. Therefore, blood from the upper parts of the large intestine can also be black and tarry, and blood coming from the small intestine can be fresh if the transit time does not allow for the digestion of the blood. Some medications, such as metronidazole, ferrous sulfate, or bismuth or some food ingredients (liver, spinach) can also produce dark stools that can sometimes be confused with melena. Asking about ulcerogenic medications, especially NSAIDs, etc.
anticoagulant exposure (e.g., rodenticide), or recent trauma is also important.

Fresh blood that is adherent to the feces is called hematochezia and is consistent with large bowel or recto-anal bleeding. Hematochezia can be associated with local disorders (colitis, proctitis, foreign body, or neoplasia) or coagulopathy. It is not always associated with dyschezia or straining to defecate and is therefore sometimes not observed by the owner.

Ribbon-like stools are observed in conditions associated with a narrowing of the colonic, rectal, or anal passage and frequently lead to dyschezia or constipation. Sometimes, round or ball-like feces looking like horse manure (Figure 1.5) are observed with perineal herniation or anal diverticula.

Acholic feces are clay-like feces that can be observed in patients with extra-hepatic bile duct obstruction or destructive cholangiitis.1

1.1.2.7 Flatulence and borborygmus

Flatulence and borborygmus (rumbling of the gastrointestinal tract) are ultimately due to the presence of large amounts of intestinal gas that can occur in association with many digestive disorders. Excessive gas can also be associated with abdominal discomfort. A dietary history is important in these patients since certain types of foods commonly lead to the formation of excessive gas in the intestinal lumen (e.g., legumes, soybeans, or excess fat).

Table 1.6: Characterization of small and large bowel diarrhea1,3,6,11

Please note that none of these parameters is absolute.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Small intestine</th>
<th>Large intestine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume per defecation</td>
<td>Increased</td>
<td>Decreased or normal</td>
</tr>
<tr>
<td>Mucus</td>
<td>Absent (except in ileitis)</td>
<td>Frequently present</td>
</tr>
<tr>
<td>Melena</td>
<td>May be present</td>
<td>Rarely present</td>
</tr>
<tr>
<td>Hematochezia</td>
<td>Absent except in acute hemorrhagic diarrhea</td>
<td>Frequently present</td>
</tr>
<tr>
<td>Steatorrhea</td>
<td>Present in patients with malabsorption</td>
<td>Absent</td>
</tr>
<tr>
<td>Defecation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>Usually slightly increased up to 4 times per day but can be severely increased in severe acute enteritis</td>
<td>Increased (many defecations with small volume)</td>
</tr>
<tr>
<td>Dyschezia</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Tenesmus</td>
<td>Absent</td>
<td>Frequently present</td>
</tr>
<tr>
<td>Urgency</td>
<td>Absent; except in severe cases</td>
<td>Usually present; sometimes with indoor soiling</td>
</tr>
<tr>
<td>Other signs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flatulence/borborygmus</td>
<td>May be present</td>
<td>May be present</td>
</tr>
<tr>
<td>Weight loss</td>
<td>May be present</td>
<td>Rare</td>
</tr>
<tr>
<td>Anal pruritus</td>
<td>Absent</td>
<td>May be present</td>
</tr>
<tr>
<td>Vomiting</td>
<td>May be present</td>
<td>May be present in acute colitis</td>
</tr>
</tbody>
</table>

Figure 1.4: Melena. This figure shows melena in a dog with severe gastric bleeding.

Figure 1.5: Perineal herniation. Round stools that look like “horse manure” from a dog with perineal herniation.
1.1.2.8 Dyschezia

Dyschezia is defined as difficult or painful defecation characterized by straining to defecate with or without defecation. Dyschezia can be observed in association with large bowel diarrhea but also with some other conditions such as constipation, rectal disease, anal disorders such as anal furunculosis or anal gland sacculitis, or prostatomegaly in male dogs.

Tenesmus is straining to defecate and is a clinical manifestation of either dyschezia or colonic and recto-anal discomfort.

1.1.2.9 Constipation

Constipation is defined by the passage of dry, hard feces and is associated with a decreased number of bowel movements and straining to defecate. In cases of suspected constipation, it is important to ask about urination behavior as urinary straining can be confused with straining to defecate in some patients, especially in cats with lower urinary tract obstruction. Straining before defecation is usually associated with obstructive or functional disorders inducing constipation. In contrast, straining throughout defecation or persisting after defecation has been completed is frequently associated with diarrhea of inflammatory disorders of the colon and/or rectum.

Sometimes, the constipated patient is presented for diarrhea. The diarrhea perceived by the owner is due to a small quantity of liquid fecal material passing around the fecal bolus lodged in the colon and/or rectum.

1.1.2.10 Fecal incontinence

Fecal incontinence is characterized by uncontrolled loss of feces without crouching to defecate. It must be differentiated from urgency to defecate by carefully questioning the owner as these two causes of fecal soiling are frequently confused. In patients with true fecal incontinence, the stools are usually normal and loss of feces frequently occurs during excitation or coughing. The owner should be questioned about the presence of controlled and normal defecation to assess whether the neuro-muscular control of defecation is functional. A history of trauma (especially tail trauma in cats) as well as medical or surgical conditions of the perianal area are frequently associated with fecal incontinence.

1.1.2.11 Anal pruritus

Anal pruritus is manifested by perineal licking or biting, anal scratching, or scooting. It is usually associated with recto-anal diseases such as anal furunculosis, anal gland disorders, or Dipylidium infestation, but can also be a manifestation of food allergy, constipation, or inflammatory bowel disease.

1.1.2.12 Abdominal pain

The owner may report certain behaviors such as a saw horse stance or prayer position (stretching out the forelimbs with the sternum in contact with the floor and standing on the hind limbs), which are strongly suggestive of cranial abdominal pain. Bruxism (teeth grinding) or restlessness can also sometimes be associated with severe abdominal pain in dogs and cats. Restlessness can sometimes be observed during the first stages of gastric dilation/volvulus. In cases of extreme abdominal pain, the pet may be severely depressed or even aggressive.

1.1.3 Dietary history

A complete dietary history can be very important in the diagnosis of gastrointestinal disease and should include specific commercial foods that are being fed, commercial snacks or treats, supplements and chewable medications, chewable toys, human foods (especially leftover foods from human meals), access to other sources of food (ask about other pets in the household or about people who may give extra food to the pet). Many medical supplements or certain drugs contain proteins or additives that may elicit allergic or other adverse reactions (especially vitamins, fatty acids, or dermatological supplements). It is also important to try to identify any possible correlation between clinical signs and certain types of food, supplements, or medications.

Abnormal feeding patterns should be documented. Coprophagia can be observed in any disorders causing polyphagia such as exocrine pancreatic insufficiency or high-dose corticosteroid treatment. Also, coprophagia or pica can be observed in patients with nutritional deficiencies or those with behavioral problems. Eating grass is frequently reported in dogs and cats, and is of concern when it is followed by nausea or vomiting. Eating grass could either be the cause or more commonly a consequence of a gastrointestinal problem.
Key Facts

- Acquiring an accurate history is essential to further characterize the clinical signs related to digestive diseases.
- Differentiation between regurgitation and vomiting is necessary to determine an optimal workup for each patient.
- In cats constipation must not be mistaken for urinary straining.
- Dietary history is a cornerstone in the diagnosis and management of digestive diseases.

References

1.2 Physical Examination

Andrea Boari

1.2.1 Introduction

By far the most important diagnostic tool that veterinarians can utilize is their ability to obtain a complete history and conduct a thorough physical examination. The objective of the physical examination is to recognize and describe gross deviations of the patient’s physical appearance and behavior from those recognized as normal for the animal’s species, breed, age, sex, and sexual status.

The trend toward an increased use of laboratory tests and instrumentation has added diagnostic capabilities, but such techniques are useful adjuncts for diagnosis only when a careful physical examination has been carried out. Thus, information gathered from laboratory and diagnostic imaging procedures must be considered a supplement to, but not a substitute for, hands-on examination. Inspection of the patient, palpation, percussion, and auscultation, all have a place in every examination. Only acute life-threatening situations require a shorter initial examination, until the animal’s condition can be stabilized. In fact, if the patient is in shock or hemorrhaging, or has gastric dilation/volvulus, it is essential to initiate supportive care immediately and obtain a complete history with careful examination afterwards.

The physical examination of the gastrointestinal tract, as described in this chapter, is part of the methodical and standardized physical examination first developed at the School of Veterinary Medicine of Bologna University.1

In this chapter, the discussion is mainly limited to parameters of the physical examination that are specific and directly related to the gastrointestinal system, but it is important to note that the clinician should examine all body systems when presented with a patient that manifests signs of gastrointestinal disease. Ophthalmic and neurological examination, not included in this chapter, should not be forgotten because they can sometimes provide invaluable clues to the cause of a gastrointestinal dysfunction.
1.2.2 General physical examination

1.2.2.1 Skeletal growth and development

A failure to grow in dogs and cats, often seen with endocrinopathies such as hyposomatotropism and hypothyroidism, can also result from vascular ring or other esophageal anomalies, malabsorption, or portosystemic shunts (Figure 1.6).

1.2.2.2 Body condition

Measurement of body weight is inexpensive, easy, and very useful. Weight loss can be caused by inadequate nutrient assimilation (anorexia, regurgitation, vomiting, maldigestion, or malabsorption), increased loss of nutrients (protein-losing nephropathy [PLN] and/or protein-losing enteropathy [PLE]), and/or increased energy demand, as it occurs in hyperthyroid cats or febrile patients. Cachexia associated with fever can be due to infectious (e.g., FIP, FeLV), inflammatory (e.g., canine distemper, FIP, sepsis), and vascular (e.g., coagulopathies, hypertension) disorders.

Weight loss is unusual in patients with diarrhea due to large bowel disease, but it can be seen in patients with severe, long-standing colitis such as histiocytic ulcerative colitis (HUC), cecocolic intussusception, or diffuse colorectal neoplasia. However, it could also be caused by the tendency of owners to fast a pet with diarrhea.

It is very important to remember that an acute decrease in body weight can be due to water loss (i.e., vomiting and/or diarrhea) and that measurement of body weight will allow an accurate assessment of the level of dehydration.

1.2.2.3 Mental status

Depression or stupor can be related to abnormal brain function caused by metabolic (e.g., hepatic encephalopathy or acid-base and osmolality imbalances), inflammatory (e.g., canine distemper, FIP, sepsis), and vascular (e.g., coagulopathies, hypertension) disorders.

1.2.2.4 Abnormalities in posture and locomotion

In the cat, neck ventroflexion can be a sign of hypokalemia that can be caused by gastrointestinal loss of potassium due to vomiting, diarrhea, or anorexia. Abnormal posture, such as arching of the back or adoption of the “prayer” position (Figure 1.7), is a characteristic sign of abdominal pain, which needs to be differentiated from back pain.
1.2.2.5 Mucous membranes

Mucous membrane color and capillary refill time (CRT) are used to estimate peripheral perfusion. A slower CRT suggests either dehydration or high peripheral sympathetic tone and vasoconstriction. Both are associated with low cardiac output. In a patient presented for vomiting, diarrhea, and/or anorexia, it is very important to address the patient’s overall hydration status. To that end, the clinician should assess body weight, skin turgor or pliability, moistness and color of the mucous membranes, CRT, position of the eyes in their orbits, and the pulse and respiratory rates and their characteristics.

Pale mucous membranes are a manifestation of either decreased red blood cell mass or decreased peripheral perfusion. In the latter case, shock (i.e., hypovolemic, cardiogenic, or vasocmotor shock) can cause hypovolemia, cardiac insufficiency, and vasoconstriction. A result pallor is a hallmark of shock. In patients with endotoxemic shock, the mucous membranes may become cool to the touch.

Pale mucous membranes can also be associated with hepato-biliary disease due to increased consumption and/or as an effect of non-regenerative anemia due to chronic disease. Peptic and neoplastic gastric ulceration may also lead to anemia. Acute blood loss into the abdomen due to visceral hemangiosarcoma (HSA), which occurs much more frequently in dogs than cats, can also cause pale mucous membranes, weakness, abdominal distension, and increased pulse and respiration rates. The CRT is normal for anemic patients unless hypoperfusion is also present.

Also, the oral and ocular mucous membranes are often the first sites where jaundice can be seen. Yellow oral mucous membranes are almost always observed in cases of severe icterus and can be caused by immune-mediated hemolytic anemia or hepatobiliary disease.

A septic patient often has injected, highly vascular mucous membranes (brick-red) as can also occur in polycythemic patients, or those with acute hepatic and pancreatic disease, or severe azotemia. Congestion of mucous membranes may occur in patients with gastrointestinal disease, usually as a manifestation of dehydration. Mucous membranes should also be checked for signs of hemorrhage. Superficial bleeding into the skin or mucous membranes, and scleral and vitreal hemorrhage are often common manifestations of abnormalities of primary hemostasis. In addition to petechiae or ecchymoses, the animal may also present with hematemesis and melena as well as hematuria. Although infrequent, patients with severe hepatic disease can show bleeding diathesis due to coagulation factor deficiency, disseminated intravascular coagulation (DIC), or portal hypertension. Because of the multiple hemostatic defects present in patients with DIC, they may experience hemorrhage of any type and in any location (cavity or superficial).

1.2.2.6 Peripheral lymph nodes

Mandibular, precapular, and popliteal lymph nodes are usually palpable and they should be evaluated for size, shape, and consistency. The axillary and superficial inguinal lymph nodes are not always discernible. Given the close proximity of the mandibular lymph nodes and submaxillary salivary glands, it is essential that the clinician be able to distinguish between the two. Especially in cats, the surrounding subcutaneous fat may make the popliteal lymph nodes seem larger than their actual size. On the other hand, emaciated adult animals may have normal-sized popliteal lymph nodes that appear more prominent because of loss of fat and muscle mass.

Generalized lymphadenopathy usually indicates a systemic disease (e.g., immune-mediated disease, systemic infection, or more commonly neoplasia). Especially in the dog, the presence of markedly enlarged external lymph nodes that are firm and non-painful, is highly suggestive of lymphoma.6

1.2.2.7 Skin and subcutaneous tissue

The skin should be carefully inspected for areas of alopecia, inflammation, nodularity, and crustiness. Also, examination of the mucocutaneous junctions may reveal evidence for systemic immune-mediated diseases. Canine systemic lupus erythematosus has occasionally been reported to cause mega-esophagus, chronic small bowel diarrhea with PLE, and chronic hepatitis.5–7

Non-seasonal pruritus, erythema, and papules can be attributed to food hypersensitivity or “intolerance” in both dogs and cats. Concurrent presence of gastrointestinal and dermatological signs in dogs and cats is strongly suggestive of food hypersensitivity.8–12

Dramatic skin lesions (i.e., erythema, crusts, erosions, ulcers, alopecia, or shiny skin) can be seen in high-contact areas and on the ventral thorax and abdomen in patients with superficial necrolytic dermatitis, which can be caused by liver disease or glucagonoma. Also, pancreatic tumors have been reported as a cause of alopecia in dogs and cats.13

The integument should also be evaluated for changes in skin turgor, which is assessed in a consistent manner and location, usually on the lateral thorax. In evaluating skin turgor, the clinician should take into account the fact that skin turgor is dependent on the amount of subcutaneous fat and elastin, as well as on the interstitial volume. Thus, emaciated and older animals may appear more dehydrated than they actually are. On the other hand, obese animals may appear falsely well-hydrated based on their skin tenting.
Generalized soft tissue swelling or enlargement involving the four limbs, often associated with ascites, may be due to edema. Edema can be easily distinguished from other subcutaneous fluid accumulations or masses because pressure applied to an edematous area results in an indentation that stays for a short period of time. Subcutaneous edema can occasionally be seen in hypoalbuminemic dogs with PLE, PLN, or severe hepatic insufficiency.

1.2.2.8 Body temperature

At the time the temperature is taken, the clinician should also note if the rectal area is clean or soiled from diarrhea or matted, and whether the anal sacs are distended. The perineum is also observed for the presence of tapeworm proglottides. At the end of the examination, the thermometer should be examined for any blood, melena, or mucous. The appearance of blood in the feces can vary according to the site of bleeding, the transit time through the gastrointestinal tract, and the volume of blood lost.

Hematochezia (i.e., fresh blood in the stool) is strongly suggestive of large bowel disease, in particular colitis. However, enterocolic and cecocolic intussusception, colorectal neoplasia and coagulopathies, especially platelet disorders, must also be considered, even though these are uncommon. Melena describes tar-, coal-, or asphalt-colored stools, resulting from digested blood and can be observed due to bleeding into the pharynx, esophagus, stomach, or upper small bowel. When melena is present, a complete physical examination should include careful inspection of the nares, oropharynx, and lungs for evidence of the source of bleeding. It is important to remember that a life-threatening volume of blood can accumulate within the gastrointestinal tract, with little or no visible signs of external blood loss. If gastrointestinal blood loss is associated with acute diarrhea, regardless of its cause, this signals a loss of normal intestinal mucosal integrity. With the loss of this barrier, the normal enteric flora can cross into the bloodstream, leading to septicemia. In this case, the clinician needs to address this life-threatening complication of diarrhea, while determining its cause.

There are many causes of fever in patients with gastrointestinal disease, ranging from infectious diseases (e.g., FeLV, FIV, FIP, canine distemper, feline panleukopenia, canine parvovirus, leptospirosis, salmonellosis, toxoplasmosis, leishmaniasis, histoplasmosis, blastomycosis, cryptococcosis, coccidiodomycosis, or rickettsial infections) to disorders involving the liver, exocrine pancreas, and the peritoneum, or neoplasia such as lymphoma or carcinoma.

In contrast, severely uremic patients, patients with sepsis and shock, or patients in the final stages of several severe systemic diseases can be hypothermic.

1.2.2.9 Pulse rate

The effects of many systemic and metabolic diseases on cardiac structure and function are well recognized. In some cases these may constitute the major clinical concern, while in others these effects may be subtle or of minimal importance. Common causes of tachycardia are excitement, fever, anemia, hemorrhage, shock, hypotension, significant alterations in the concentration of electrolytes or acid–base balance, congestive heart failure, and some infections.

Patients with GDV often show cardiac dysfunction, especially after surgical decompression. This is often associated with tachyarrhythmias or, less commonly, bradyarrhythmias.

Septic shock, often caused by gram-negative bacteria, can result in brick-red mucus membranes with a strong pulse during the initial stages, or pale mucus membranes and a weak pulse during the latter stages.

Electrolyte and acid–base abnormalities can produce significant alterations in cardiac function. These can often be documented during examination of the pulse; but are better recorded using an ECG. Severe hyperkalemia (usually \(>8 \) mEq/L) causes severe cardiac dysfunction. In addition to hypoadrenocorticism, hyperkalemia with hyponatremia (Na/K ratios \(<27:1\)) may also be found in dogs with gastrointestinal disease due to trichuriasis, salmonellosis, or a perforated duodenal ulcer and, although rare, in patients with peritoneal effusion. Hyperkalemia without hyponatremia is almost always associated with impaired renal excretion due to oligouric or anuric renal failure.

Arrhythmias can also be observed in patients with hypokalemia. Hypokalemia is sometimes associated with alkalemia but more often is due to gastrointestinal loss of potassium or renal loss in patients with polyuric renal failure.

1.2.2.10 Respiratory rate

Respiratory rate and quality should be recorded before beginning the specific examination. It is important to differentiate between an increased respiratory rate that is due to a physiological response to exercise, hyperthermia, and anxiety, and one that is due to disease. Inspiratory dyspnea can be observed in patients with an elongated or edematous soft palate or feline patients with a pharyngeal polyp.

Animals with esophageal disease or vomiting can be presented to a veterinarian for respiratory distress due to aspiration pneumonia. Suspicion of megaesophagus or other esophageal diseases should be high if the owner reports that recurrent regurgitation or vomiting took place before the respiratory signs developed.
Severe and life-threatening dyspnea is often present in patients with pleural effusion and ascites associated with ascites due to hypoproteinemia or non-septic inflammation (i.e., FIP).

Rapid breathing can also be attributed to cranial displacement of the diaphragm by abdominal masses, fluid, or gas (e.g., gastric torsion) and/or acid-base imbalances. A compensatory hyperventilation is frequently seen in animals with metabolic acidosis caused by severe diarrhea, chronic renal disease, diabetic ketoacidosis, or hypoadrenocorticism.

1.2.3 Examination of the gastrointestinal tract

The examination of the gastrointestinal or digestive tract begins at the head (i.e., oral cavity), passes through the neck, down to the abdomen, and finishes with a rectal examination. Examination of the mouth and pharyngeal structures often provides important clues as to the pathogenesis of anorexia, vomiting, regurgitation, or drooling. In particular, drooling, which is best defined either as ptyalism (i.e., overproduction of saliva) or pseudoptyalism (i.e., dribbling or drooling of saliva that has accumulated in the oral cavity), occurs because animals are unable to swallow or are in too much pain to do so, as occurs during nausea, hepatic encephalopathy (especially in the cat), seizures, stomatitis, glossitis, gingivitis, pharyngitis, tonsillitis, and oral or pharyngeal dysphagia. Nasal discharge can also be associated with dysphagia, gagging and sometimes vomiting.

Swallowing and the gag reflex are assessed by placing an index finger at the base of the tongue or by observing the animal while it is drinking or eating. Tonsillitis or enlargement of the tonsils, mainly in the dog, can cause anorexia, vomiting, or dysphagia, and can occasionally be a sign of systemic disease (e.g., lymphoma). The tongue is examined for color and movement. The underside of the tongue is checked for masses, string foreign bodies (in the cat), or a laceration of the frenulum as a result of a string.

The odor of the breath can be indicative of dental or periodontal disease, but also of uremia or ketonemia.

The high frequency of hyperthyroidism in geriatric cats obliges the clinician to carefully palpate the paratracheal area, extending from the caudal larynx to the thoracic inlet, in order to detect nodular swelling suggestive of thyroid gland enlargement. The normal feline thyroid glands cannot be palpated.

Abdominal distension may be due to gas, fluid, organomegaly, or a poor abdominal muscle tone. Association with other clinical signs such as vomiting, diarrhea, abdominal pain, polydipsia, polyuria, polyphagia, or edema, may serve as a clue to the underlying etiology. In the dog, gastric tympany results in a flaring of the posterior rib cage and the hypochondrium. As gastric distension increases, the posterior abdomen also becomes visibly distended. If the enlarged abdomen is due to abdominal fluid, ballottement should be carefully performed to determine if a fluid wave is present. With experience, false positive results are infrequent.

Abdominal effusion is usually caused by hypoalbuminemia, portal hypertension, or peritoneal inflammation. Effusion due to gastrointestinal disease is primarily caused by PLE, hepatic failure, rupture of the alimentary tract, or leakage following anastomosis. PLE in a young dog with chronic intermittent diarrhea, without hookworms, should prompt suspicion of a chronic intussusception and an abdominal ultrasound should be performed.

Pyogranulomatous inflammation of the abdominal or thoracic cavity that is associated with a characteristic effusion is typical for the effusive form of FIP.

Malignant abdominal tumors may lead to obstruction of lymphatic flow, increased vascular permeability, accumulation of a modified transudate, or development of non-septic peritonitis. Modified transudates can also result from hepatic or cardiac disease. Hepatobiliary malignancies or other intra-abdominal malignant forms of neoplasia that have spread to the peritoneum can elicit an inflammatory reaction, with subsequent exudation of lymph, fibrin, and blood. This fluid may be serosanguinous, hemorrhagic, or pseudochylous in appearance.

Enlarged organs that most often account for increased abdominal size are the liver, spleen, and occasionally, the kidneys. Alternatively, single neoplastic masses of other organs also frequently lead to abdominal distension.

Abdominal palpation is the cornerstone of the physical examination in dogs and cats with clinical signs of gastrointestinal disease. This can be a most informative procedure for the cat, because of the ease with which most of the viscera can be palpated in this species.

If a gas-distended abdomen is suspected, digital abdominal percussion should be performed, listening for a tympanic sound. A sudden onset of a gas-distended abdomen, shock, and even death are often observed in dogs with intestinal volvulus.
Some animals tense their abdominal muscles in response to palpation. It is essential to determine whether this is caused by pain, anxiety, or the exertion of too much pressure during palpation. More significance is attributed to the pain response elicited in stoic animals and to pain that is localizable, repeatable, and evident after minimal manipulation. It is necessary to determine whether the painful area is superficial, located in the cranial or caudal abdomen, and whether it originates from a specific viscus. Cranial abdominal pain is commonly observed in dogs with pancreatitis, but less commonly observed in cats. Generalized abdominal pain with rigidity of the abdominal musculature suggests generalized peritonitis.

It is worth noting that if an animal arches its back during abdominal palpation the primary problem may be in the spinal cord. The empty stomach in cats and dogs is usually only palpable in thin patients, although if distended with food, it can be palpated in the upper left abdominal quadrant in most patients. The gallbladder and pancreas are not normally palpable. However, in patients with pancreatitis, pancreatic neoplasia, or a pancreatic pseudocyst, an abdominal mass and pain associated with palpation of the mass may be observed in the right cranial quadrant of the abdomen.

The small intestine is easily palpated as a thin-walled and smooth object that fills much of the mid-abdomen, and slides through the fingers. In the cat, the ileocecal area can often be palpated as a firm, knot-like structure in the mid-cranial abdomen, and should not be confused with an abdominal mass. The bowel should be carefully evaluated for thickness, rigidity, and irregular masses. A thickened intestinal wall may be felt in patients with intestinal infiltration by inflammatory or neoplastic cells and in patients with intestinal smooth muscle hypertrophy.19

Masses (e.g., lymph node enlargements, foreign bodies, omental steatitis, neoplasia, intussusception, or focal granulomatous lesions, such as those that can be seen in patients with a non-effusive form of FIP) can cause partial or total intestinal obstruction, but may go undetected during physical examination because of their small size.20 Fluid-distended small bowel loops are often palpable in patients with acute enteritis. Aggregated or accordion-like small bowel loops are characteristic of a linear foreign body obstruction in cats. Palpable mesenteric lymph node enlargements are often associated with tumors, granulomas, or intestinal inflammation (with or without foreign body obstruction). A massive mesenteric lymphadenopathy is often typical of dogs and cats with alimentary tract lymphoma, but modest lymphadenopathy can also be found in patients with IBD or other chronic intestinal diseases.

A sick animal that vomits shortly after abdominal palpation should be suspected of having a GI obstruction, severe GI tract inflammation, or pancreatitis.

The transverse and descending colon are often full of fecal material and can easily be identified by palpation of the mid-posterior abdomen, just ventral to the spine. An impacted colon (the colon must be at least twice its normal diameter before megacolon can be considered), is caused by intestinal obstruction or dysmotilities.

The liver can be palpated routinely just caudal to the costal arch along the ventral body wall in both canine and feline patients, but may not be palpable in some cases. If the liver is not palpable, it does not automatically mean that it is abnormally small. Microhepatia is mainly seen in patients with a congenital portosystemic shunt or those with chronic hepatic disease with progressive loss of hepatocytes. However, hepatic size is better evaluated by radiography. In lean cats, it is possible to palpate the diaphragmatic surface of the liver. In animals with pleural effusion or other diseases that expand the thoracic volume, the liver may appear enlarged due to caudal displacement. The pattern of hepatic enlargement may be generalized or focal depending on its cause. Infiltrative and congestive diseases tend to result in smooth, firm, and diffuse hepatomegaly. Primary or metastatic neoplasia, nodular hyperplasia, and some chronic hepatic diseases associated with nodular regeneration can cause focal or asymmetric hepatic enlargement.

In icteric dogs and cats, hepatosplenomegaly may be attributable to mononuclear-phagocytic cell hyperplasia and extramedullary hematopoiesis secondary to immune-mediated hemolytic anemia or to infiltrative processes such as systemic mast cell disease, lymphoma, or myeloid leukemia.

Palpation of the spleen is not always possible, but sometimes the free distal portion is palpable on the floor of the mid-abdomen. The spleen is palpated for identification of an increase in size and for nodules or larger masses. In patients with severe splenomegaly, the spleen may occupy the entire ventral abdominal floor.21 When the enlarged spleen is folded over, it may be mistaken for a mass. With experience, the clinician can sometimes unfold the spleen with his or her thumb, and thus the “real” shape of the organ can be evaluated.

The kidneys can only be easily palpated in cats because they are more loosely attached than they are in dogs. The kidneys are normally located in the retroperitoneal area, and the right kidney lies slightly more cranial than the left. The kidneys are evaluated for size, shape, location, firmness, pain, and surface irregularities. The left kidney (the only one that can be palpated in some dogs) is especially movable and can easily be mistaken for an abdominal mass. Enlarged, abnormally-shaped kidneys may be caused by acute renal failure, renal neoplasia, renal cysts, abscesses, granulomatous nephritis due to FIP, hydronephrosis, or hematoma. In contrast, small renal size is often associated with chronic renal disease.
During abdominal palpation of intact female animals, the normal non-gravid uterus is usually non-palpable. Massive uteromegaly caused by pregnancy, pyometra, mucometra, or hydrometra can sometimes give the mistaken impression of ascites and must be carefully differentiated.

Lastly, abdominal auscultation may sometimes be helpful. Failure to detect intestinal sounds after two or three minutes of auscultation is suggestive of ileus.

The perineal area should be examined for evidence of diarrhoea caked in the hair coat, masses, or herniations. Rectal examination must always be performed and the clinician should be able to identify and evaluate the colonic mucosa, anal sphincter, anal sacs, pelvic canal bones, urogenital tract, and luminal contents. Mucosal polyps can easily be misinterpreted as mucosal folds, and it is possible to miss partial structures that are large enough to allow a single finger to pass through.

Pelvic canal obstruction due to congenital and acquired causes can lead to constipation and megacolon, especially in cats.

Rectal discomfort, hematochezia, and mucous can be found in patients with colitis, proctitis, or large bowel neoplasia as described previously.

During the rectal examination, the prostate of all mature male dogs must be evaluated for size, symmetry, surface structure, and pain. If enlarged, the prostate may extend slightly over the brim of the pelvis or fall into the abdomen. In this latter situation, the prostate can be palpated in the caudal abdomen ventral to the colon and caudal to the urinary bladder. To assist in rectal palpation, the other hand of the examiner should be used to gently push the prostate into a more dorsal and caudal position via abdominal palpation.

Also, in order to complete the physical examination, the clinician should observe the act of defecation whenever possible, especially if there is a history of dyschezia or tenesmus.

Whether tenesmus occurs before or after defecation can also aid in differentiation of the underlying disease process. Obstructive disorders are more commonly associated with tenesmus before evacuation of feces, whereas inflammatory disorders are often associated with persistent tenesmus after the evacuation of feces.

Key Facts

- A life-threatening volume of blood can accumulate within the gastrointestinal tract, with little or no visible signs of external blood loss.
- Abdominal distension may be due to gas, fluid, organomegaly, or poor abdominal muscle tone.
- PLE in a young dog with chronic intermittent diarrhea, without hookworms, should prompt a suspicion of chronic intussusception.
- Aggregated (accordion-like) small bowel loops on abdominal palpation are characteristic of a linear foreign body obstruction in cats.
- A sick animal that vomits shortly after abdominal palpation should be suspected of having a GI obstruction, severe GI tract inflammation, or pancreatitis.
- Rectal examination should be performed in every patient presenting for evaluation of gastrointestinal disease.

References

Eosinophilic enteritis (EE) 326
- clinical signs 326
- diagnosis 326
- dog 318
- pathogenesis 326
- treatment 326
Eosinophilic enterocolitis (EEC) 326
Eosinophilic gastroenteritis (EGE) 312, 326
- dog 318
Eosinophilic gastroenterocolitis (EGEC) 326
Eosinophilic infiltration 162, 326
Eosinophilic inflammatory infiltrate 35
Eosinophilic mucosal infiltrates 326
EPEC see Escherichia coli, canine enteropathogenic EPI see Esocrine pancreatic insufficiency
Epidermal growth factor (EGF) 33
Epithelium
- superficial
- destruction 347
Epinephrine stimulation test 341
Epithelial cells 243
Epithelial
- biliary 272
Equine nasogastric tube 170
Esophagus 83, 142, 166
- gastric 83
Erythema 309, 347
- necrolytic migratory (NME) 347
Erythematous mucosa 143
Erythromycin 174
Escherichia coli 189, 205, 261, 269, 278
- canine (EPEC) 192
- enterotoxigenic 204
- enterotoxin-producing (ETEC) 192
- intestinal 276
- pathogenic 192
- tracheal-toxin-producing (STEC) 192
Esophageal inflammation 141
Esophageal phase 140
Esophagitis 81, 141, 145
- endoscopy 141
- histopathology 141
Esophagogastroendoscopy 129–76
Esophagoesophagus 144, 152
Esophagus 139–153
- anatomy 139
- contrast esophagogram 146
- contrast radiography 145
- contrast videofluoroscopy 140, 142, 144f., 147
- diagnostic imaging 22–25
- dilation 25, 69
- diseases 140–153
- airway-esophageal fistula 146
- acquired 145
- congenital 146
- diagnosis 146
- contrast esophagogram 146
- treatment 146
- tracheoesophageal achalasia 20f., 140f.
- diverticula or Diverticulum
- esophagitis 141, 145
- foreign body or Esophagus, foreign body
- gastroesophageal
- intrasural 148
- reflux, gastroesophageal
- hiatal hernia or Hernia, hiatal
- megaoesophagus
- anatomic conditions see
- Esophagus, tumor
- strictures or Esophagus, stricture
- vascular ring anomalies 148
- esophagoscopy 22
- endoscopy 80f., 142, 145
- feline 139
- fluoroscopy 140, 152
- foreign body 23, 85f., 142f., 145
- clinical signs 142
- diagnosis 142
- lodging 142
- removal 142
- fluoroscopy-guided 143
- surgical 143
- laboratory tests
- molecular genetics-based 69
- layers
- muscular 139
- submucosal 139
- lesions 141
- loss of distensibility 141
- lymphatics 139
- hypertrophic 230, 233
- dilated 230
- hypertrophic 230, 233
- idiopathic 230
- dilated 231, 235
- management 233
- pathophysiology 230f.
- prognosis 235
- treatment 232–236
- laxative therapy see Laxatives
- prokinetic agents 235
- removal of impacted feces see
- FIVV presentation 234
- surgery 235
- colectomy 233, 235
- ostomy 235
- Feline non-lymphoid cancer 236
- Feline panleukopenia 189
- clinical signs 189
- diagnosis 189
- drugs 189
- fluid therapy 189
- Feline parvovirus (FPV) 189
- FIV see Feline leukemia virus
- FeLV see Feline leukemia virus
- Feudinadazole 222
- Fermentation
- microbial 203
- Fecal floatation 195, 198, 222, 317
- medium 166
- Fecal occult blood test 168
- Fecal pancreatic elastase concentration 297
- Fecal proteolytic activity (FPA) 65, 296
- testing 296
- Fecal sample 197
- Fecal urgency 118, 226, 317
- Fecal test for undigested starch and muscle fibers 296
- Feces
- colonic 57, 251, 270
- impacted
- removal 233f.
- enema solutions 234
- rectal suppositories 234
- rectal suppositories 233
- reduced volume 223
- steatorrhea 57
- FCoV see Feline coronavirus
- Feeding tube placement 96
- Feline coronavirus (FeCoV) 189
- infection 189
- Feline immunodeficiency virus (FIV) 189
- Feline infectious peritonitis (FIP) 189, 274
- Feline interferon omega 188
- Feline leukemia virus (FeLV) 189, 329
- Feline megacolon 230–236
- clinical history 234
- clinical presentation 231
- diagnosis 231f.
- colonoscopy 232
- digital rectal examination 231
- dilated 230
- hypertrophic 230, 233
- idiopathic 230
- manual extraction 234
- management 233
- pathophysiology 230f.
- prognosis 235
- treatment 232–236
- laxative therapy see Laxatives
- prokinetic agents 235
- removal of impacted feces see
- FIVV presentation 234
- surgery 235
- colectomy 233, 235
- ostomy 235
- Feline non-lymphoid cancer 236
- Feline panleukopenia 189
- clinical signs 189
- diagnosis 189
- drugs 189
- fluid therapy 189
- Feline parvovirus (FPV) 189
- FIV see Feline leukemia virus
- Feudinadazole 222
- Fermentation
- microbial 203

stainer_register.indd 356
356 Subject Index

26.02.2008 16:29:46 Uhr
Gluten-sensitive enteropathy (GSE)

2.5% glutaraldehyde

–, synthetase

–, accumulation

Glutamine

–, dehydrogenase

–, IV

–, plasma concentration

–, intracellular concentration

–, blood concentration

Glucose

–, treatment

–, diagnosis

–, clinical presentation

Glomerular damage

–, submucosal

– –, secretory cells

– – –, mucus-secreting cells

– – –, pyloric glands

– – –, parietal cells

– – –, mucous neck cells

– –, fundic glands

– – –, mucus-secreting cells

– –, cardiac glands

–, gastric

– –, adenocarcinoma

–, esophageal

Glands

–, vaccination

–, treatment

–, diagnostic tests

Giant Schnauzer

Glanders

–, adenoscarcinoma

–, chief cells

–, mucous neck cells

–, parietal cells

–, pyloric glands

–, gastrin-producing endocrine cells

– –, mucus-secreting cells

– –, secretary cells

–, mucous

–, submucosal

Glomerular damage

263

Greater curvature

–, ileal

Granulocytes

–, extramedullary

Hematopoiesis

Hematology

Hematochezia

–, therapy

–, symptoms

Hemangiosarcoma

Helminthic infection

–, transmission

–, electron microscopy

–, culture

–, -like organisms

–, like organisms

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

Hemostasis

Hemosiderin

Hemorrhagic gastroenteritis (HGE)

–, fatal

–, acute toxic

Hepatic fibrosis

–, chronic

–, cat

–, IV fluid administration

–, portal vein

–, terminal hepatic veins (THV)

–, ridge

–, acute

–, acute 25ff.

–, diagnosis 256

–, etiology 255

–, follow-up 256

–, pathogenesis 25ff.

–, symptoms 256

–, treatment 256

–, drugs 256

Growth-hormone-releasing hormone (GHRH)

Grossman, 185f.

Greater curvature

–, ileal

Hepatic growth factor (HGF)

244, 265

Hepatocytes

–, functions 244

–, diagnosis 245

Hepatoma

Hepatic disease

–, chronic

–, cat

–, fulminant

–, lobular disecing 261

–, diagnosis 261

–, etiology 261

–, pathogenesis 261

–, symptoms 261

–, therapy 262

–, reactive 26ff.

–, secondary reactive 262

–, suppurative 99, 101

Hepatobiliary disease

–, suppurative

–, focal

–, hepatic parenchyma

–, focal

–, chronic

–, in dogs

–, active

–, (due to) copper storage 259f.

–, -like organisms

–, like organisms

–, electron microscopy

–, culture

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

Hepatic lipidosis

–, incomplete

–, incomplete

–, diagnosis

–, fulminant

–, diffuse

–, chronic 244, 265

–, acute 26ff.

–, chronic 25ff., 256–260

–, acute 25ff.

–, portal vein

–, terminal hepatic veins (THV)

–, ridge

–, acute

–, acute 25ff.

–, diagnosis 256

–, etiology 255

–, follow-up 256

–, pathogenesis 25ff.

–, symptoms 256

–, treatment 256

–, drugs 256

–, IV fluid administration 256

–, diagnosis 255

–, chronic 25ff., 256–260

–, active 258

–, (due to) copper storage 259f.

–, -like organisms

–, like organisms

–, electron microscopy

–, culture

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy

–, electron microscopy

–, electron microscopy

–, helminthus

–, -like organisms

–, electron microscopy
Subject Index

- *esophageal* see *Esophagus*, tumor
- *gastric* see *Stomach*, tumor
- *gastrointestinal*
 - *neuroendocrine* tumors 337-351
 - hepatic 83
 - large intestine or *Large intestine*, tumor
 - malignant 340
 - mast cell tumor 101, 167, 211, 213, 236
 - metastatic 101
 - neuroendocrine 45
 - non-silent cell tumor 178
 - pancreatic 83
 - peptic 159, 167f., 346
 - non-neoplastic 82
 - neoplastic 82
 - gastric 27
 - duodenal perforated 345
 - defi nition 166
 - ulceration 164
- *ulcer* 77, 83
- *Vomiting* 5–7, 17, 115, 147, 162, 195
- *gastric* 22, 25–27, 69
- acute 195
- center 115, 159
- chronic 120–126, 168, 270, 315, 324, 346, 350
- causes 121
- diagnostic approach 123f.
- evaluation 121–123
- fecal examination 124
- history 122
- persistent 161
- physical examination 122
- signalment 122
- etiology 115f.
- intermittent 161, 166
- postprandial 173
- persistent 141
- reflex 115
- travel-sickness induced 161
- von Willebrand’s factor (vWF) 254
- VWF or von Willebrand’s factor
- *Wall layering* 237, 259
- *intestinal* 25
- loss of 28
- thickness 28
- duodenal 35
- jejunal 35
- *Water absorption* 219
- *Weight loss* 7, 140f., 144, 162, 166, 212, 223, 237, 246, 261, 274, 295f., 299, 316, 324, 335, 344, 346, 349
- acute 134
- chronic 133–136
- appetite 134
- diagnosis 135
- dietary history 135
- etiology 134f.
- pathophysiology 134
- travel history 136
- *West Highland White Terrier* 308
- *Whipple’s triad* 340
- *Whipworms* 221f.
- *clinical signs* 221
- diagnosis 222
- egg identifying 222
- feeding 222
- pathophysiology 221f.
- prognosis 222
- treatment 222
- *White mucous membranes* 170
- *Willebrand’s disease* 346
- *W-type coin forceps* 86
- *Yersinia* spp. 119, 132, 189
- *Yorkshire Terrier* 195
- hepatic microvascular dysplasia (MVD) 70
- lymphangiectasia 69
- portovascular anomalies 70
- *Zinc* 260
- *Zinc sulfate* 170
- *centrifugation* (ZSFC) 196
- *rotation* 222
- *zonotic threat* 195
- ZSFC or *Zinc sulfate centri-
 - fication* 222
- *Zymogens* 284