Anjop J. Venker-van Haagen
Ear, Nose, Throat, and Tracheobronchial Diseases in Dogs and Cats
Anjop J. Venker-van Haagen

Ear, Nose, Throat, and Tracheobronchial Diseases in Dogs and Cats

schlütersche
Anjop J. Venker-van Haagen, DVM, PhD, DECVS
Former Associate Professor of Veterinary Ear Nose and Throat Diseases
Faculty of Veterinary Medicine
Department of Clinical Sciences of Companion Animals
Utrecht University, The Netherlands
Contents

Abbreviations .. VIII

Preface .. IX

1 The Ear ... 1

1.1 Functional considerations 1

1.1.1 The ear as sensory organ 1

1.1.2 Middle ear matches different impedances 2

1.1.3 Organ of Corti, sensory organ for hearing 3

1.1.4 Ascending and descending pathways for hearing 5

1.1.5 Vestibular organ, the key to postural reflexes and eye movement 5

1.2 History and clinical signs 6

1.2.1 History 6

1.2.2 Clinical signs 7

1.2.3 Physical examination 9

1.3 Special diagnostic techniques 9

1.3.1 Otoscopic examination 10

1.3.2 Diagnostic imaging of the ear 12

1.3.3 Tympanometry 15

1.3.4 Neurological examination for vestibular dysfunction 16

1.3.5 Hearing tests 16

1.4 Congenital diseases of the ear 19

1.4.1 Congenital deformity of the external ear 19

1.4.2 Congenital deafness 19

1.5 Inflammatory diseases of the ear 21

1.5.1 Primary and secondary skin diseases of the auricle 21

1.5.2 Perichondritis and chondritis of the auricle 23

1.5.3 Cold agglutination and cutaneous vasculitis of the auricle 24

1.5.4 Inflammatory diseases of the external ear canal 24

1.5.5 Inflammation of the tympanic membrane 30

1.5.6 Inflammatory disease of the middle ear 30

1.5.7 Labyrinthitis 34

1.6 Tumors of the ear 35

1.6.1 Malignant tumors of the auricle 35

1.6.2 Malignant tumors of the external ear canal 36

1.6.3 Tumors of the middle ear 37

1.7 Trauma to the ear 37

1.7.1 Trauma to the auricle 37

1.7.2 Auricular hematoma 38

1.7.3 Trauma to the external ear canal 38

1.7.4 Trauma to the tympanic membrane 39

1.7.5 Trauma to the temporal bone 40

1.8 Ototoxicity 41

1.9 Hearing in dogs and cats 42

1.9.1 Hearing and hearing loss in dogs 43

1.9.2 Brain stem auditory evoked responses in dogs 43

1.9.3 Hearing and hearing loss in cats 46

1.9.4 Brain stem auditory evoked responses in cats 46

2 The Nose and Nasal Sinuses 51

2.1 Functional considerations 51

2.1.1 Regulation and conditioning of the inspiratory and expiratory airflow 51

2.1.2 Mucosal cleaning 52

2.1.3 Olfaction 53

2.1.4 Specific functional systems 53

2.2 History and clinical signs 53

2.2.1 History 53

2.2.2 Clinical signs 54

2.2.3 Physical examination 55

2.3 Special diagnostic techniques 55

2.3.1 Diagnostic imaging 56

2.3.2 Rhinoscopy 57

2.3.3 Olfactory tests 59

2.4 Congenital diseases of the nose and nasal sinuses 60

2.4.1 Congenital malformation of the nasal plane 60

2.4.2 Nasal dermoid sinus cysts 62

2.4.3 Congenital cerebrospinal fluid fistula 62

2.4.4 Congenital malformation of the frontal sinuses 62

2.4.5 Congenital ciliary dysfunction 62

2.5 Rhinitis and sinusitis 63

2.5.1 Infectious rhinitis and sinusitis 63

2.5.2 Noninfectious rhinitis and sinusitis 68

2.6 Tumors of the nasal plane, the nasal cavity, and the frontal sinus 72
3 The Pharynx 83
3.1 Functional considerations 83
3.1.1 Auditory tube serves to equalize atmospheric pressure 83
3.1.2 Swallowing 83
3.2 History and clinical signs 88
3.2.1 History 88
3.2.2 Clinical signs 88
3.3 Special diagnostic techniques 89
3.3.1 Pharyngoscopy 89
3.3.2 Diagnostic imaging of the pharynx 90
3.3.3 Electromyography of the pharyngeal muscles 91
3.4 Congenital deformities and disorders of the pharynx 91
3.4.1 Hypoplasia of the soft palate 91
3.4.2 Congenital malformation of the soft palate 92
3.4.3 Hyperplasia of the soft palate 92
3.4.4 Choanal atresia 93
3.4.5 Craniopharyngioma (Rathke's pouch tumor) 94
3.5 Pharyngitis 95
3.5.1 Nasopharyngitis 95
3.5.2 Oropharyngitis and tonsillitis 99
3.5.3 Pharyngeal mucocele 101
3.6 Tumors of the pharynx 101
3.7 Blunt and penetrating injuries of the pharynx 103
3.7.1 Blunt pharyngeal injuries 103
3.7.2 Penetrating pharyngeal injuries 104
3.8 Dysphagia 106
3.8.1 Causes of dysphagia 106
3.8.2 Diagnosis in dysphagia 113
3.8.3 Therapy in dysphagia 116

4 The Larynx 121
4.1 Functional considerations 121
4.1.1 The glottic closure reflex 121
4.1.2 Respiratory movements of the glottis 122
4.1.3 Movements of the glottis in vocalization 122
4.1.4 Action of the glottis in coughing 122
4.1.5 Supplementary innervation of the dog's intrinsic laryngeal muscles 122
4.2 History and clinical signs 124
4.2.1 History 124
4.2.2 Clinical signs 125
4.3 Special diagnostic techniques 126
4.3.1 Laryngoscopy 126
4.3.2 Diagnostic imaging of the larynx 127
4.3.3 Electromyography of the intrinsic laryngeal muscles 127
4.4 Congenital deformities and disorders of the larynx 128
4.4.1 Congenital glottis stenosis 128
4.4.2 Congenital subglottic stenosis 129
4.4.3 Laryngeal hypoplasia 130
4.5 Laryngitis 132
4.5.1 Benign laryngeal masses 137
4.5.2 Ventral midline approach to the laryngeal cavities to expose large masses 137
4.6 Tumors of the larynx 138
4.6.1 History and clinical signs of laryngeal tumors 138
4.6.2 Imaging of laryngeal tumors 139
4.6.3 Laryngoscopy for laryngeal tumors 139
4.6.4 Therapy for laryngeal tumors 140
4.7 Blunt and penetrating injuries to the larynx 141
4.7.1 Blunt laryngeal injuries 142
4.7.2 Penetrating laryngeal injuries 144
4.8 Laryngeal paralysis and functional disorders of the larynx 146
4.8.1 Neurogenic laryngeal paralysis 147
4.8.2 Laryngeal spasm 160
4.8.3 Paradoxical vocal fold movement 161
4.8.4 Sensory laryngeal paralysis and laryngeal dysfunction 161
5 The Trachea and Bronchi 167
5.1 Functional considerations 167
5.1.1 Trachea and bronchi facilitate the respiratory airflow 167
5.1.2 Trachea and bronchi condition the respiratory air 167
5.2 History and clinical signs 168
5.2.1 History 168
5.2.2 Clinical signs 169
5.2.3 Physical examination 170
5.3 Special diagnostic techniques 171
5.3.1 Diagnostic imaging 172
5.3.2 Bronchoscopy 172
5.4 Congenital diseases of the trachea and the bronchi 175
5.4.1 Hypoplasia of the trachea 175
5.4.2 Collapse of the trachea 181
5.4.3 Segmental tracheal stenosis 183
5.4.4 Congenital ciliary dysfunction 183
5.5 Tracheitis and bronchitis 184
5.5.1 Infectious tracheobronchitis in dogs 185
5.5.2 Infectious tracheobronchitis in cats 187
5.5.3 Noninfectious tracheobronchitis 187
5.5.4 Bronchiectasis 189
5.5.5 Prolapse of the dorsal ligament of trachea and main stem bronchi ... 189
5.6 Tumors of the trachea and bronchi 194
5.7 Tracheal trauma 195
5.8 Airway management 199
5.8.1 Endotracheal intubation 200
5.8.2 Cricothyroidotomy 202
5.8.3 Tracheostomy 202
5.8.4 Permanent tracheostoma 203
5.8.5 Tracheal T-tube 205
6 Cranial Neuralgias and Facial and Trigeminal Paralysis 209
6.1 Cranial neuralgias 209
6.1.1 Glossopharyngeal neuralgia 209
6.1.2 Trigeminal neuralgia 209
6.2 Facial and trigeminal paralysis 210
6.2.1 Facial paralysis 210
6.2.2 Trigeminal paralysis 211
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog-to-digital converter</td>
</tr>
<tr>
<td>B.O.S.</td>
<td>Brachycephalic obstructive syndrome</td>
</tr>
<tr>
<td>BAER</td>
<td>Brain stem auditory evoked response</td>
</tr>
<tr>
<td>BERA</td>
<td>Brain stem evoked response audiometry</td>
</tr>
<tr>
<td>CPG</td>
<td>Central pattern generator</td>
</tr>
<tr>
<td>CRDs</td>
<td>Complex repetitive discharges</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital-to-analog converter</td>
</tr>
<tr>
<td>dB SPL</td>
<td>Decibel sound pressure level</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalogram</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromyogram/Electromyography</td>
</tr>
<tr>
<td>F generations</td>
<td>Offspring generations</td>
</tr>
<tr>
<td>FISH and RH mapping</td>
<td>Methods for gene mapping used for association studies</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>i.d.</td>
<td>Inside diameter</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>kHz</td>
<td>Kilohertz</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>Nd-YAG laser</td>
<td>Laser using Yttrium-Aluminum-Garnet with Nd ions</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Nonsteroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>NTS</td>
<td>Nucleus tractus solitarius</td>
</tr>
<tr>
<td>p < 0.01</td>
<td>The probability that the result is due to chance is less than 1 in 100 (highly significant)</td>
</tr>
<tr>
<td>P generation</td>
<td>Parent generation</td>
</tr>
<tr>
<td>SLN</td>
<td>Superior laryngeal nerve/Cranial laryngeal nerve</td>
</tr>
<tr>
<td>T-tube</td>
<td>T-shaped tracheal tube</td>
</tr>
<tr>
<td>V</td>
<td>Trigeminal nerve</td>
</tr>
<tr>
<td>VII</td>
<td>Facial nerve</td>
</tr>
<tr>
<td>IX</td>
<td>Glossopharyngeal nerve</td>
</tr>
<tr>
<td>X</td>
<td>Vagus nerve</td>
</tr>
<tr>
<td>Xph</td>
<td>Pharyngeal branch of the vagus nerve</td>
</tr>
<tr>
<td>XII</td>
<td>Hypoglossal nerve</td>
</tr>
</tbody>
</table>
Preface

Among my fellow members of the International Veterinary Ear Nose and Throat Association (IVENTA), the reason for marking out specialization in diseases of the ear, nose, throat, and tracheobronchial tree is clear. They recognize that many of the diseases of these organs have similar clinical signs, similar infectious etiology, or similar regulatory mechanisms, and that these organs share cranial nerves for the execution of their functions.

Most of the knowledge in this field has been provided to veterinarians—and regularly updated by—the major textbooks of small animal internal medicine and small animal surgery. The textbook presented here aims not only to provide a more complete overview of diseases of the ear, nose, throat, and tracheobronchial tree but also to increase understanding of the functions of the respective organs for hearing, olfaction, swallowing, vocalization, and conditioning inspired air for gas exchange in the lung.

Each chapter begins with functional considerations of its subject and ends with a clinical topic chosen for its uncommon complexity. The book is readily accessible through a detailed list of contents and an elaborate index. It is intended to provide information of interest to academics as well as practitioners and students.

I am grateful to Dr. Bruce Belshaw for editing the English language with care and experience. Mr. Joop Fama handled the figures and made them shine, and I am grateful both for his knowledge and for the time and care he gave to the work. Dr. Ulrike Oslage at Schlütersche Verlagsgesellschaft invited me to write this textbook and I thank her not only for the opportunity but also for the free hand which I had in preparing it. Dr. Simone Bellair at Schlütersche Verlagsgesellschaft fine-tuned the written material and the various pictures into a book and I am grateful for her professional skill.

I hope that readers will find this a pleasant and useful book and that interest in this field will continue to develop the science of ear, nose, throat, and tracheobronchial diseases in dogs and cats.

Utrecht, May 2005
Anjop Venker-van Haagen
1 The Ear

1.1 Functional considerations

1.1.1 The ear as sensory organ

The ear is a sensory organ that has evolved to receive and transform the air waves or vibrations that we call sound into a code of neural impulses to be conveyed to the brain. The resulting distinct patterns of neural activity in the brain are then integrated with information from other sensory systems to guide behavior. The first stage of this transformation occurs in the external and middle ear, which collect sound waves and amplify their pressure, so that the sound energy can be successfully transmitted from air to the fluid that fills the cochlea of the inner ear. In the inner ear the signal is divided into simpler, sinusoidal components, with the result that the frequency, amplitude, and phase of the original signal are faithfully converted by the sensory hair cells into encoded electrical activity in the auditory nerve fibers. In the brain the earliest stage of central processing occurs in the cochlear nucleus, where the peripheral auditory information diverges into a number of parallel central pathways. These include the superior olivary complex, where the information from the two ears interacts to aid in localizing the sound in space. The cochlear nucleus also projects to the inferior colliculus of the midbrain, a major integrative center and the first place where auditory information can interact with the motor system. The inferior colliculus is an obligatory relay for information traveling to the thalamus and cortex, where more complex aspects of sound are processed.

External ear. The external ear is the portion lateral to the tympanic membrane. It consists of the external auditory canal and its cartilaginous extension, the auricle. The medial part of the auditory canal is surrounded and supported by the temporal bone. The auricle is covered with skin which continues as the lining of the auditory canal. This skin is thin and in the medial part of the auditory canal it has little subcutaneous tissue, but in the lateral part it bears numerous hair follicles and ceruminous and sebaceous glands. Both the bony and the cartilaginous parts of the auditory canal provide an open passageway for air to the tympanic membrane. The tympanic membrane is the medial boundary of the auditory canal and its lateral component is formed by the epithelium of the skin lining the auditory canal. In mammals the auricle and the auditory canal are together regarded as a simple funnel that collects and crudely filters sound. In humans, however, the auricle and auditory canal increase the acoustic pressure at the tympanic membrane of sounds in the 1.5 kHz to 5 kHz range, which is the frequency range most important for speech perception. In the dog and cat the auricle can be turned toward the source of sound; right and left auricles can move independently so that each ear can focus on separate sounds. Hence the animal does not have to turn its head to localize sounds, as humans do. It is not clear to what extent the shape of the auricle—large and erect like that of the German shepherd or folded like that of the cocker spaniel—influences hearing capacity, but the latter might seem to be disadvantageous, at least in theory.

Tympanic membrane. The tympanic membrane terminates the ear canal and covers the entrance to the tympanic cavity, thereby separating the external from the middle ear. The membrane is composed of three layers, the outer squamous cell epithelial layer being a continuation of the epithelial layer of the skin of the external ear canal, the inner mucosal layer being a continuation of the mucosa of the middle ear or tympanic cavity, and the intervening fibrous layer or tunica propria. The tympanic membrane is thin, slightly oval, semitransparent, and concave, owing to traction on its...
medial side by the tensor tympani muscle. There are three ossicles (malleus, incus, stapes) in the middle ear, the manubrium of the malleus being fixed in the tunic a propria of the tympanic membrane. The tensing of the tympanic membrane makes it ideal for the conversion of sound waves into vibrations of the malleus.

1.1.2. Middle ear matches different impedances

The major function of the middle ear is to match relatively low impedance airborne sounds to the higher impedance fluid of the middle ear. The term impedance in this context stands for a medium’s resistance to movement. Because of the difference in impedance of the two media, 99.9 % of the sound energy is reflected at the interface between air and fluid and only 0.1 % is converted into pressure changes in the fluid. The middle ear overcomes this problem and ensures transmission of the sound energy across the air-fluid boundary. The first and major boost is achieved by focusing the force impinging on the relatively large diameter tympanic membrane onto the much smaller diameter membrane of the oval window, where the stapes, the last of the three ossicles, is attached and where the vibration of the tympanic membrane is conveyed to the fluid of the inner ear. A second and related process involves the mechanical advantage gained by the lever action of the three interconnected ossicles which link the tympanic membrane to the oval window.47, 52

\textit{Auditory ossicles.} These are also attached to the wall of the epitympanum or dorsal part of the tympanic cavity by several ligaments. While the manubrium of the malleus is embedded in the tympanic membrane, the head is suspended in the epitympanum and is fused with the incus in a rigid joint. The long process of the incus is then linked to the stapes by another joint, one that is rigid in the direction of the piston-like movement of the stapes but flexible perpendicular to this movement. The stapes is suspended in the oval window of the cochlea by two ligaments. The stapedius muscle—the smallest striated muscle in the body—is attached to the head of the stapes. It pulls the stapes in a direction perpendicular to the piston-like motion and is innervated by the facial nerve. The other muscle of the ossicles is the tensor tympani muscle attached to the muscular process of the malleus. It pulls the manubrium of the malleus inward, tensing the tympanic membrane. This muscle is innervated by the trigeminal nerve. One of the functions of the two muscles of the middle ear is to support and stiffen the ossicular chain. In addition, because loud sounds are attenuated by the actions of the acoustic reflex—the contraction of both muscles in response to loud sounds—it is likely that another function of the reflex is to protect the inner ear from damage due to overexposure to excessive sounds. In addition to their protective function, the two muscles may attenuate low-frequency masking sounds that might otherwise interfere with auditory function. Contraction of the muscles during chewing would attenuate the associated sounds, which are largely low frequency, while preserving sensitivities to high-frequency external sounds.37, 47

\textit{Tympanic cavity.} The ventral part of the tympanic cavity forms the tympanic bulla. Although its function is not known with certainty, it may be to improve the perception of sounds of very high and very low frequencies.17 The middle part of the tympanic cavity, the mesotympanum, includes the tympanic membrane in its lateral wall and opens rostrally into the nasopharynx via the auditory (eustachian) tube. The auditory tube is short and its narrow lumen is compressed laterally and usually not open. The tube is confined by an inverted cartilaginous trough except along its ventral border.
The pharyngeal openings of the left and right auditory tubes are located in the lateral walls of the nasopharynx and are marked by accumulations of lymphoid tissue. The cartilage of the auditory tube extends into the medial wall of the pharyngeal opening and stiffens it. The auditory tubes facilitate equalization of the pressures on the opposite sides of the tympanic membrane. They open temporarily during each swallow and yawn. This permits escape of the slight secretion from the goblet cells and the glands in the lining of the tympanic cavity.17

\textit{Inner ear.} The inner ear is housed in a bony labyrinth in the petrous portion of the temporal bone. It contains the membranous labyrinth with its sensory organs of hearing and balance. The membranous labyrinth consists of an interconnecting series of epithelial-lined tubes and spaces containing endolymph. There are three functionally-related parts: (1) the semicircular ducts, containing hair cells that detect acceleration of the endolymph caused by rotation of the head; (2) the utricle and saccule, containing hair cells with a membrane, the macula, that responds to linear acceleration of the head and its static position; and (3) the cochlear duct, which is the auditory portion of the labyrinth, resembling a snail shell and containing the hair cells involved in hearing, in the organ of Corti.

\textit{Cochlea.} This is the bony shell surrounding the cochlear duct in a spiral of 3 \(\frac{1}{2}\) turns (in the dog) around a hollow central core of bone, the modiolus, which contains the cochlear nerve. The osseous spiral lamina that winds around the modiolus, much like the thread of a screw, divides the lumen of the cochlea into the tympanic and vestibular canals, both containing perilymph. The osseous spiral lamina begins within the vestibule, the ovoid space that communicates with the cochlea rostrally and with the semicircular canals caudally, and ends at the apex. The vestibular canal communicates with the vestibule and hence the fluid within, the perilymph, is acted upon by the foot plate of the stapes resting on the membrane in the oval window. The round window is the opening, also covered by a membrane, by which the tympanic canal communicates with the middle ear. Both windows are at the basal end of the cochlea. The membranous cochlear duct completes the separation of the two canals but they communicate at the apex of the modiolus via a small opening, the helicotrema. Perilymph gains access from the subarachnoid space to the vestibule, cochlea, and semicircular ducts via the perilymphatic duct.19

\textbf{1.1.3 Organ of Corti, sensory organ for hearing}

The organ of Corti in the cochlear duct is the sensory organ for hearing. It contains many different cells, of which the hair cells are the most directly involved with hearing. The hair cells, so-called because of the hair-like bundles of cilia that project from their apex, are arranged in rows along the basilar membrane, the connective tissue that forms the floor of the cochlear duct. There are two main types of hair cells, outer and inner. The outer hair cells—about 12,000 in the human cochlea—are arranged in 3 to 5 rows along the basilar membrane, while the inner hair cells—about 3,500 in the human cochlea—are arranged in a single row. The outer hair cells are cylindrical and the inner hair cells are shaped like a flask or pear. The outer hair cells are incompletely surrounded by supporting cells (Deiter's cells on the basilar membrane side and Hensen's cells laterally) and they lie free in the perilymph covering the organ of Corti. The inner hair cells are tightly surrounded by supporting cells. The stereocilia of the outer hair cells form an inverted »\text{W}« and a basal body representing a rudimentary cilium (kinocilium). The inner hair cells have stereocilia arranged linearly and also a rudimentary cilium.21, 47
Stereocilia/hair cells. These are linked together by specific structures. The tips of the tallest outer hair cell stereocilia are embedded in the overlying tectorial membrane, whereas the tips of the inner hair cell stereocilia are free of the membrane. The tectorial membrane is anchored medially at the limbus, medial to the cochlear duct, and laterally to Hensen’s cells by a fibrous net. The basilar membrane is attached to the modiolus at a different site and when the basilar membrane and the tectorial membrane are displaced vertically by the traveling wave created by sound energy delivered to the oval window, the displacement of the basilar membrane creates a shearing action between the cuticular plate, the base of the stereocilia, and the tectorial membrane. The stereocilia of the outer hair cells which are attached to both structures bend. The streaming movement of the fluid between the cuticular plate and the tectorial membrane may bend the inner hair cell cilia which are not attached to the tectorial membrane. It is the bending of the stereocilia which initiates the electrical current in the hair cells and the formation of the electrical potential in the fibers of the cochlear nerve.

The resting potential of the hair cell is between −45 mV and −60 mV relative to the fluid that bathes the basal end of the cell. At the resting potential, only a small fraction of the potassium-selective transduction channels at the tip of the stereocilia are open. When the hair bundle is displaced in the direction of the tallest stereocilium, more transduction channels open, causing depolarization as K⁺ enters the cell. Depolarization in turn opens voltage-gated calcium channels in the hair cell membrane, and the resultant Ca²⁺ influx causes more transmitter release from the basal end of the cell into the auditory nerve endings. Because some of the transduction channels are open at rest, the receptor potential is biphasic: movement toward the tallest stereocilia depolarizes the cell, while movement in the opposite direction leads to hyperpolarization. This allows the hair cell to generate a sinusoidal receptor potential in response to a sinusoidal stimulus.

The basal and apical surfaces of hair cells are separated by tight junctions. The apical end with stereocilia is exposed to the potassium-rich, sodium-poor endolymph produced by the stria vascularis. The basal end is bathed in perilymph, the same fluid that fills the tympanic canal, and is K⁺-poor and Na⁺-rich. The endolymph is about 80 mV more positive than the perilymph, while the inside of the hair cell is about 45 mV more negative than the perilymph. The resulting electrical gradient across the membrane of the stereocilia (about 125 mV) drives K⁺ through the open transduction channels into the hair cell.

It is the inner hair cells that are the sensory receptors and 95% of the fibers in the auditory nerve that project to the brain arise from this subpopulation. The terminations of the outer hair cells are almost all from axons that descend from cells in the brain. The outer hair cells have a function in changing the stiffness of the tectorial membrane by actively contracting and relaxing. In this way the outer hair cells sharpen the frequency-resolving power of the cochlea at particular locations, and thereby account for the cochlea’s extreme sensitivity. The basilar membrane is stiffer at the basal end than at the apex. The gradual change in stiffness causes sounds reaching the ear to create a wave on the basilar membrane that travels from the base toward the apex of the cochlea. This traveling motion is the basis for the frequency separation that the basilar membrane provides, higher frequencies activating sensory cells at the base of the cochlea and lower frequencies activating the sensory cells at the apex. The outer hair cells interact actively with the motion of the basilar membrane.
1.1.4 Ascending and descending pathways for hearing

The auditory nervous system contains an ascending and a descending pathway. The ascending auditory nerve extends from the organ of Corti to the cochlear nucleus in the brain stem and its bipolar cell bodies are in the spiral ganglion, located in the modiolar region of the cochlea. Fibers cross over from the cochlear nucleus to the contralateral superior olivary complex and from there the bundle continues as the lateral lemniscus before ascending to the inferior colliculus, in which most of its fibers terminate. The bilateral inferior colliculi are connected by commissural fibers and fibers also project to the medial geniculate body. From the medial geniculate body fibers project to the primary auditory cortex.48,49 Of the two descending pathways, the corticocochlear system connects the primary auditory cortex with the inferior colliculus and the periolivary nucleus, while the olivocochlear system connects these pontine nuclei with hair cells of, mainly, the contralateral cochlea, as described in the cat.27

Vestibular organ, the key to postural reflexes and eye movement

The vestibular organ and the cochlea are joined and the common membranous labyrinth that forms the auditory cochlea also comprises the utricle, the sacculus, and the semicircular canals of the vestibular organ. The vestibular membranous labyrinth within the osseous labyrinth is filled with endolymph. Like the cochlear endolymph, it is high in K⁺ and low in Na⁺. The space between the osseous labyrinth and the membranous labyrinth is filled with perilymph, similar in composition to that in the vestibular and tympanic canals of the cochlea, low in K⁺ and high in Na⁺. As in the cochlea, the cell bodies of the vestibular hair cells are embedded in perilymph and their stereocilia are in endolymph. Depolarization of these cells is similar to that of the cochlear hair cells (see above). Movement of the endolymph in the direction toward the tallest stereocilium causing an influx of K⁺ via the top of the stereocilia, which in turn opens the voltage-gated calcium channels. The calcium influx causes more release of transmitter from the basal end of the cell. Movement away from the tallest stereocilium causes hyperpolarization of the hair cell and thus reduces nerve transmission. The vestibular hair cells are located in the utricle and the sacculus and in the three ampullae at the base of the semicircular canals.53

Vestibular hair cells. These hair cells provide the basis for vestibular function. The hair bundles have a specific orientation in each part of the vestibular organ. The accelerating movement of the endolymph in the semicircular canals causes the cap of the ampullary crest, the organ consisting of hair cells and their supporting cells, to bend following the movement of the fluid. Sensory receptors in the macule of the saccule and the utriculus consist of hair cells and associated supporting cells. Overlying the hair cells is the otolithic membrane, in which crystals are embedded. A shearing motion between the macule and the otolithic membrane occurs when the head undergoes linear acceleration.

Vestibular function is a key component in both postural reflexes and eye movements. Damage to the system affects balance, the control of eye movements when the head is moving, and the sense of orientation in space. The dysfunction of the vestibular system will be illustrated in the section on ototoxicity.
1.2 History and clinical signs

1.2.1 History

The medical history in diseases of the ear is characterized less by hearing disorders than by pain. Pain can be caused by disease of both the external ear and the middle ear, and can be unilateral or bilateral. When the inner ear is involved in the dog or the cat, vestibular dysfunction is more commonly mentioned in the history than loss of hearing. Diseases of the ear are usually presented as disorders affecting one or both ears exclusively. However, questioning may reveal signs of a more generalized skin disorder of which inflammation of the external ear is a part, or recurrent periods of fever and other signs of infection together with middle ear disease, or other signs of neurogenic disease rather than a vestibular problem alone. It is therefore essential that additional questions be asked about the animal’s general condition, appetite, drinking, and physical activity; whether there have been changes in its habits; and whether there have been similar problems in the past, in either or both ears. The onset of ear problems may be sudden or gradual. The onset of signs caused by a foreign body in the external ear is often sudden and recognized by the owner. In contrast, inflammation of the external ear often begins gradually but becomes progressively worse; with such a history it is useful to ask what treatments have been tried. There are many ways of treating inflammation of the external ear which cause the inflammation to persist or even to increase. If parasitic infection is suspected, questions should be asked about contacts with other animals, of the same or different species. Vestibular dysfunction is usually sudden in onset and the signs are usually dramatic, but hearing loss may go unnoticed, especially if unrelated to a specific event. In some cases of sudden deafness an associated event is mentioned by the owner, but it is not always easy to find a logical relation between this and the hearing loss. Unilateral hearing loss is often masked by normal hearing in the other ear.

Figure 1.1 a–c: This cocker spaniel was shaking its head continuously. Its ear canals were clean and not inflamed. (a) The auricles are long but were normal on visual inspection. (b) Palpation of the auricles revealed several heavy lumps of hair with accumulated dirt and food. (c) Clipping away the hair stopped the shaking.
1.2.2 Clinical signs

Pain is an »unpleasant sensory and emotional experience associated with actual or potential tissue damage«. It is a complex subjective experience, depending on the severity of the noxious damage, but also on a variety of additional cognitive and emotional aspects, and is therefore difficult to measure. It is even more complicated when a dog or cat is in apparent pain as described by the owner or caretaker. Ear pain is usually recognized if the animal tries to prevent handling of the ear, is less alert than usual, and sometimes very carefully scratches the ear or shakes the head. Pain and pruritus are not easily distinguished by casual observation, and in dogs and cats the signs of both can be suppressed by analgesic drugs. Pain caused by external ear disease may be severe and may change the dog's or cat's behavior, something often better recognized in retrospect when the pain disappears with successful treatment.

Signs of external ear disease. These are predominantly pain and pruritus, the pain sometimes causing the dog to turn its head slightly with the painful ear downwards. In dogs the auricle may be in an uncharacteristic position for the breed, and in cats it may be folded and turned backwards. The concave side of the auricle is usually thinly haired and inflammation of the external ear can be recognized by swelling and lesions of the skin, often with excess cerumen and exudate. Long hair on the auricle can become heavy with accumulated dirt and food, also causing the dog to shake its head in the absence of ear inflammation (Figure 1.1 a–c). Rubbing or scratching of the ear which injures the skin can lead to bacterial infection, increasing the inflammation and pain. Other signs of inflammation include scaling, hyperpigmentation, and tissue proliferation, the latter particularly at the base of the auricle on the concave side and around the entrance to the ear canal. Thickening of the auricle can result from acute or chronic dermatitis or perichondritis. The auricle can also be extremely thickened by a hematoma within the cartilage layer, presenting as a bulge on the concave side. In contrast to an abscess, which occurs most often in cats, a hematoma does not result in pain or general malaise.

Temperature of the auricle. The temperature of the auricle varies with the flow of blood, best appreciated on the concave side by the accompanying variation in its pink color. The color can vary not only with the ambient temperature but also with the balance between sympathetic and parasympathetic influence on blood flow in the auricle. A »red and warm« auricle may be a normal and transient finding, and is then usually bilateral.

Cerumen, or ear wax, is formed on the concave side of the base of the auricle and in the external ear canal. It is a mixture of the secretions of the sebaceous and the ceruminous glands. It has a waxy consistency and varies in color from
Figure 1.2: An English pointer with signs of acute left-sided labyrinthitis: rotation of the head and cranial portion of the body, with the affected ear down and the eyes turned toward the affected side also.

Figure 1.3: A cocker spaniel, 3 months after ototoxic injury to the labyrinth of the right ear. The dog could stand and walk, but the rotation of its head was permanent.

The Ear

yellow to brown. The secretion of the sebaceous glands being gray to white and that of the ceruminous glands being brown, the color of cerumen varies with the relative contribution of each. A thin layer of cerumen is normally present in the areas where the glands are located and sometimes small lumps are found at the base of the auricle at the entrance to the ear canal. The odor of cerumen is usually described as aromatic, but if the skin of the base of the auricle and the ear canal is inflamed, the production of cerumen can be increased and its composition can be changed. An increase and alteration in the bacterial flora can change the appearance of the cerumen and give it a more penetrating odor. When combined with pus and detritus, its appearance and odor may become overwhelming and repulsive.

Primary inflammatory disease of the middle ear mainly causes pain. It is usually unilateral and appears to be severe. The animal shuns petting of its head and loses alertness and appetite. Hearing loss is to be expected but is almost never mentioned by the owner. If the inflammation is purulent and the tympanic membrane is ruptured, there can be purulent discharge from the external ear canal.

Vestibular dysfunction is most apparent when it is unilateral. The signs of acute vestibular labyrinthitis are loss of equilibrium, inability to stand or walk, and falling to the affected side when trying to stand; rotation of the head and cranial portion of the body with the affected ear down; deviation of the eyes toward the affected side (Figure 1.2); and horizontal nystagmus with the rapid phase toward the unaffected side. The animal is severely disoriented, nauseated, and refuses food. The vestibular system responds immediately with central compensatory mechanisms (a process of neuroplasticity), sensory substitution (vision and proprioception), and learning processes. Within 3 days the nystagmus disappears, within a week the animal can stand with assistance, and within 3 weeks it can walk. The head rotation is usually permanent (Figure 1.3), but can be masked by compensation so that it is only observed when the animal’s interest is absorbed by an event. Although the vestibular dysfunction is permanent, the persisting clinical signs vary according to the progress of compensation. However, those disabilities still present at 3 months will remain. In this regard, the clinical history may be helpful in determining the time of onset of the vestibular dysfunction if it is reviewed with an appreciation of the effects of compensatory mechanisms.
1.2.3 Physical examination

The auricles are inspected for symmetry and uniformity, and for abnormalities of the skin and hair. They are palpated to discover temperature differences and structural changes. They may be cooler than normal as a result of poor circulation, as in shock, or warmer because of hyperemia associated with inflammation. Structural changes can be due to tumor or ossification, which is a common reaction of the auricular cartilage to trauma. The entrance to the ear canal is inspected to evaluate its width. Normally the outer part of the canal, which is subcutaneous, is wide enough to be inspected without instruments. Both the medial part turning toward the temporal bone and the part within the temporal bone can only be inspected with an otoscope. The outer part is vertical when the animal’s head is positioned to look straight ahead and is thus termed the vertical part, while simultaneously the medial part is horizontal and is therefore termed the horizontal part of the ear canal. The external ear canal can be examined by palpation. The tip of the auricle is taken by one hand and stretched laterally while the first three fingers of the other hand are curved around the outermost part of the ear canal and then the tips of the fingers explore the cartilage medially. Pain elicited by this indicates inflammation. The lumen of the canal can be checked by softly compressing the cartilage. Proliferation of the lining increases the width of the canal and prevents it from being compressed. The cartilage can become ossified in chronic inflammation, resulting in a palpably hard and rigid tube. This is a painful disease, as the procedure will reveal. A tumor that is invisible to inspection can be presumed (but not diagnosed) if there is a palpable local increase in the diameter of the ear canal. Special diagnostic techniques are required for examination of the parts of the ear inside the temporal bone.

1.3 Special diagnostic techniques

Inspection of the external ear canal is very important in diagnosis of diseases affecting it. The entrance can be inspected with the naked eye but the remainder of the canal can only be inspected with the help of special illumination techniques and instruments. An otoscope is used for this purpose in the dog and the cat. This instrument consists of an ear speculum with interchangeable cones of several sizes, a small light source, and a magnifying lens (Figure 1.4). The best otoscopes have glass fibers incorporated in the wall of the speculum which transmit a bright circle of light at the tip while...
keeping the light source out of the visual path. By choosing the appropriate size of cone for each, the same otoscope can be used to examine the ear canal and tympanic membrane in a small cat as well as a very large dog.

1.3.1 Otoscopic examination

The technique of otoscopic examination is the same in the dog and cat. The animal is held on the examination table in a sitting position or resting on its sternum, restrained by an expert assistant. Its head is held looking straight ahead. If possible, its mouth should not be tied closed during this examination, particularly with something passing behind the ears, for this usually presses the ear canal shut, or fixes it tightly against the head. When the animal is held securely, either sitting or lying on its sternum, the left hand (if the examiner is right-handed) is used to grasp the auricle securely and pull it out firmly, laterally and ventrally. This brings the vertical and horizontal parts of the ear canal into line, to form a straight, horizontal tube (Figure 1.5). The otoscope is then taken in the right hand, and while looking through the otoscope, so that everything is carried out under visual control, the examiner carefully inserts the otoscope into the ear canal. The otoscope should not be advanced unless the lumen of the ear canal is clearly in view. Bringing it into view is accomplished by moving the stretched auricle and with it the ear canal, first dorsally, then rostrally, ventrally, and caudally, while looking through the otoscope. Hence the ear canal and the otoscope are moved together and in alignment rather than moving the otoscope within the ear canal. This allows the entire canal and the tympanic membrane to be inspected with the least possible discomfort for the animal. The skin lining the ear canal is very sensitive and hence pressing upon it with the otoscope should be avoided.

Examination of the ear canal of dogs is occasionally hindered by excessive hair in the entrance. The hair can be plucked in bunches with a short jerk, using a round-tipped Péan forceps. It is not noticeably painful for the animal and scarcely results in hyperemia of the skin of the ear canal. If there is excessive scaling or cerumen or exudate, the ear canal must be flushed before a satisfactory otoscopic examination can be carried out. If microscopic examination for parasites or bacteriological examination of exudate is indicated, material must be collected for this purpose before flushing. Water or 0.9 % NaCl solution can be used to flush the ear. The fluid must have a temperature of 35 to 39 °C in order to prevent dizziness and even a shock-like reaction. The stream of water must be thin and forceful in order to wash out the long and narrow ear canal. The canal should be stretched out as described for otoscopy, so that the vertical and horizontal parts form a straight tube. An apparatus developed for ear flushing in humans is excellent for use in dogs and cats. It consists of a small heater in which tap water is warmed to body temperature and held there (Figure 1.6). The water is sprayed into the ear through a short cannula at the pressure in the water supply pipe. The strength of the stream can be regulated by a lever on the handle but is limited to a physiologically
Subject Index

1 The Ear

A
- abscess 7
 - auricle 37
- acoustic reflex 2
- air conduction of stimuli 20, 46
- albinism 20
- alopecia 23
 - auricles 23
- alterations in epidermal formation 22
- amplitude of wave I 44
- amplitude of wave V 45
- amplitude ratio 45
- ampullae 5
- analog-to-digital converter 18
- antineoplastic drugs 42
- antiparasitic drugs 25
- antiseborrhic shampoos 22
- ascending auditory nerve 5
- Aspergillus infection 29
- atopy 21
- audiometer 18
- auditory canal 1
- auditory nerve fibers 1
- auditory nervous system 5
- auditory system
 - conductive part 43
 - sensorineural part 43
- auditory tube 2
- auricle 1, 7
 - abscess 37
 - alopecia 23
 - amputation 35
 - cellulitis 23
 - chondritis 23
 - cold agglutination 24
 - congenital malformation 19
 - cutaneous vasculitis 24
 - deformed 24
 - dermatitis 21
 - erythema 21
 - hematoma 7, 38
 - inspection 9
 - malignant tumors 35
 - perichondritis 23
 - removal 35
 - skin diseases
 - primary 21
 - secondary 21
 - temperature 7
 - thickening 7
 - trauma 37

B
- bacterial culture 29
- bacterial toxins 31
- bacteriological examination of exudate 10
- BAER 17
- balance organ 3
- basal cell carcinoma 35 f.
- basilar membrane 3 f.
- behavioral test 16
- BERA 17
- body
 - stabilization 16
- bone conduction 46
- bone-conducted brain stem evoked potentials 19
- bony labyrinth 3
- brain tumors 46
- brain stem auditory evoked potentials and head size 46
- brain stem auditory evoked response (BAER) 17
 - cats 46
 - dogs 43
 - to click 43
- brain stem evoked response audiometry (BERA) 17
- branchial arches 1 and 2 19
- bulla osteotomy 33
 - diagnostic 37
 - ventral 34

C
- canine immunoglobulins 24
- cartilaginous ossification 23
- cauliflower ear 38
- cell death 22
- cell renewal 22
- cellulitis
 - auricular 23
- central compensatory mechanisms 8
- cerebellum
 - vestibular part 16
- cerumen 7, 24
 - accumulated 24
 - composition 24
- ceruminous glands 1, 8
- change in pressure in the middle ear 15
- Cheyletiella
 - blakei 22
 - yasguri 22
- cholesteatoma 31, 33 f.
- chondritis 23, 29
- chronic inflammation 21
- circling 41
clear away debris 11
clearing mechanism 24
click stimuli 18, 47
cochlea 3, 5
–, histology of the development 20
–, inner ear 1
cochlear duct 3
–, membranous 3
cochlear microphonics 41
cochlear nerve 3
–, electrical potential in the fibers 4
cochlear nucleus 1, 5
compensatory mechanisms 35
compliance 15
computed tomography (CT) 12
contact hypersensitivity 21
–, caused by medications 22
contrast medium 14
coronal scan 13
cortex 1
Corti
–, organ of 3
crest
–, mesoderm 19
–, neural 19
crusting 23
CT 12
culture testing 30
cuticular plate 4
cystadenomas 36

d
Dalmatian dogs
–, deafness 20
dandruff 22
data acquisition software 18
defaith
–, acquired 19
–, congenital 19, 43, 46
–, caused by a genetic defect 20
–, hereditary
–, associated with disorders of pigmentation 20
–, unilateral 21
Deler’s cells 3
demodiosis 22
densitometric reading 13
depigmentation 23
depolarization 4
dermatitis 22
–, secondary 22
deviation of the eyes 41
diagnostic imaging 12
different stimulations
–, threshold 45
drug allergy 24

e
ear canal
–, cleaning by flushing 25
–, congenital atresia 19
–, diameter
–, palpable local increase 9
–, examination 10
–, external
–, abscess around the distal part 39
–, bleeding 39
–, continuity 39
–, diagnostic imaging 12
–, foreign bodies 25
–, inflammatory diseases 24
–, inspection 9
–, interruption 39
–, malignant tumor 36
–, massive purulent discharge 30
–, ossification 28 f.
–, polyp 32
–, stenosis 39
–, trauma 38
–, horizontal part 9
–, increase in the microflora 24
–, removal 27, 36
–, resection technique 28
–, vertical part 9
ear mite infestation 25
ectoderm 19
electrical potential in the fibers of the cochlear
nerve 4
endocrinopathies 22
dendolymph 3 f.
epithelial elements
–, primary degeneration 20
epithelial layer
–, proliferating external
–, vascularization 30
epithelial migration 40
epitympanum 2
equilibrium 16
erosion 28
eustachian tube 2
–, dysfunction 30
–, major cause 31
–, function 15
–, obstruction
–, major cause 31
excessive hair in the entrance 10
excessive scaling 10
external ear 1
–, congenital deformity 19
–, disease
–, signs 7
–, inflammation 7
–, sensory innervation 24
exudate
–, bacteriological examination 10
eyes
 –, abnormal positioning 16

F
facial nerve 32
 –, motor innervation from 24
facial paralysis 41
fibrous layer 1
fine needle aspiration biopsies 35
first pharyngeal pouch 19
FISH mapping 21
flushing 10
 –, apparatus 10
fly bites 22
food hypersensitivity 21
foreign body 11, 25
 –, clinical signs 25
 –, forceps 25
frequency 17
frequency following response 44
frequency specificity of hearing in cats 46
frostbite 24
funnel-shaped fibroelastic cartilage 24

G
ganglion
 –, spiral 21
ganglion cells
 –, loss 20
general anesthesia 12
gland carcinoma
 –, sebaceous 35 f.
glands
 –, ceruminous 1, 8
 –, sebaceous 1, 8
glossopharyngeal nerve 24

H
hair cells 3 f.
 –, inner 3 f.
 –, outer 3 f.
 –, vestibular 5
hair follicles 1
hair loss 22
hearing
 –, capacity 1
 –, cats 46
 –, classification 17
 –, dogs 43
 –, frequency-specific 17
 –, impairment 16
 –, intensity-specific 17
 –, sensorineural 46
 –, test 16
 –, earliest discriminating 19
hearing loss
 –, cats 46
 –, cisplatin-induced 42
 –, combined conductive and sensorineural 43, 46
 –, conductive 43, 46
 –, causes 43
 –, dogs 43
 –, sensorineural 41, 43, 46
 –, causes 43
 –, helicotrema 3
 –, hemangiosarcoma 35 f.
hematoma
 –, auricle 7, 38
Hensen’s cells 3
histiocytoma 35 f.
histological examination 32
horizontal nystagmus 8
Horner’s syndrome 31
hydrocephalus 43
hyperestrogenism 22
hyperpolarization 4
hypersensitivity 21, 25
hypopigmentation 20
hypothyroidism 22

I
immittance measurement 15
immune-mediated disorders 23
impedance 2
incus 2
inferior colliculus 5
 –, midbrain 1
inflammation 9, 21
inner ear 3
 –, cochlea 1
inner hair cells 3 f.
terpeak latencies 44
intraoral film 12
Ivermectin 22

K
keratin 34
keratinization
 –, altered 22
 –, disorders 22
kinocilium 3

L
labyrinth 3
 –, vestibular membranous 5
labyrinthitis 21, 31, 34, 46
 –, infectious 21
Lamour frequency 13
lateral lemniscus 5
lead poisoning 24
leishmaniasis 22
limbus 4
linear acceleration 5
linear filter setting 18
local spreading
 –, evaluation 36
 loss of transparency 30
 lupus erythematosus 23 f.
 lymphoplasmacytic inflammation 24
 lymphoreticular neoplasms 24

M
macule 3
 –, saccule 5
magnetic resonance imaging (MRI) 13
malleus 2
 –, manubrium 2, 11
manubrium of the malleus 2, 11
mast cell tumor 35 f.
medial geniculate body 5
melanin
 –, forming 20
melanoblasts 21
melanocytes 20
melanoma
 –, malignant 35 f.
membrane of the oval window 2
membranous labyrinth 3, 5
meningitis
 –, secondary 21
merle pigmentation 20
mesenchymal condensation 19
mesoderm crest 19
mesotympanum 2
microscopic examination for parasites 10
midbrain
 –, inferior colliculus 1
middle ear 1
 –, adhesion of the tympanic membrane 15
 –, cavity
 –, density 33
 –, change in pressure 15
 –, cholesteatoma 34
 –, fluid filling 15
 –, impedance 15
 –, inflammation 30
 –, acute 30
 –, primary 8
 –, purulent 30
 –, major function 2
 –, polyp in the mucosa 32
 –, surgical exploration 33
 –, tumor 37
modiolus 3
MRI 13

N
needle electrode 17
neomycin
 –, systemically administered 42
neural crest 19, 21
neural impulses 1
neural structures
 –, secondary degeneration 20
neurological examination
 –, vestibular dysfunction 16
neuroplasticity 8, 41
noise burst stimuli 47
nonscreen film 12
Notoedres cati 22
noxious damage 7
nystagmus 16
 –, head 41
 –, horizontal 8

O
olivocochlear system 5
open-mouth projections
 –, rostrocaudal 12
osseous spiral lamina 3
ossicles 2
ossicular chain 2
ossification
 –, cartilaginous 23
otic capsule 19
otitis externa 21
 –, acute
 –, caused by foreign bodies 25
 –, diffuse bacterial 25
 –, chronic 26
 –, bacterial 29
 –, proliferative 27
 –, complications 29
otitis media
 –, chronic 31, 34
 –, causes 31 f.
 –, development 30
 –, effusion 30
 –, unresolved 33
Otodectes cynotis 25
otolithic membrane 5
otoscope 9
otoscopy 10, 12, 30
ototoxic drugs
 –, pathways 41
ototoxicity 21, 41
 –, acute 41
 –, certain systemically administered drugs 42
 –, concentration of the agent 41
 –, duration of its contact 41
outer hair cells 3 f.
oval window
 –, membrane 2

P
pain 7, 9
 –, caused by external ear disease 7
 –, cognitive aspects 7
secondary bacterial infections 21
sedation 12
semicircular canals 3, 5
semicircular ducts 3
sensitivity testing 29 f.
sensory elements
–, primary degeneration 20
sensory hair cells 1
sensory organ 1
sensory substitution 8, 41
shearing motion 5
signs of shock 39, 41
sinusoidal receptor potential 4
sinusoidal stimulus 4
skin
–, trauma
–, caused by mechanical cleaning techniques 24
skull
–, radiographic examination 12
soft ointment
–, containing a broad-spectrum antibiotic 26
–, containing a glucocorticoid and a broad-spectrum antibiotic 25
sound energy 1 f.
sound in space 1
sound localization 1
sound pressure level 17
speech perception 1
spiral ganglion 5
spotting 21
squamous cell carcinoma 35 f.
squamous cell epithelial layer 1
squamous epithelium 34
stapedius muscle 2
stapes 2
staphylococcal pyrogenic exotoxin 42
\textit{Staphylococcus aureus} 26, 42
stereocilia 3 f.
stimuli from a vibrator 46
\textit{Streptococcus} 42
stria vascularis 4
–, decrease in thickness 20
subarachnoid space 3
superimpositions 12
superior olivary complex 1, 5
sutures
–, through-and-through interrupted mattress 38
–, wound 37
sympathetic nerve
–, dysfunction 31

\textbf{T}

tectorial membrane 4
temporal bone 1, 9
–, destruction 37
–, fracture 39
–, masses within 14
–, petrous portion 3

\textbf{R}

\textit{Reissner’s membrane} 20
resting potential 4
RH mapping 21
rostrocaudal open-mouth projections 12
rotation of the head 41
round window 3
–, membrane
–, permeability 42
Subject Index

–, trauma 40
tensor tympani muscle 2
thalamus 1
thresholds of hearing 46
toneburst stimuli 18
tonebursts 43, 46
transduction channels 4
transverse scan 13
trauma 37–39
trigeminal nerve 2, 24
tumor 35 f.
tunica propria 1
tympanic bulla 2
–, enlargement 34
tympanic canals 3
tympanic cavity 2
–, lining 3
–, ventral part 2
tympanic membrane 1, 11, 15
–, appearance of the opening of a fistula 33
–, experimentally perforated
–, healing 40
–, fibrovascular repair 40
–, flaccid 15
–, healing 31, 40
–, inflammation 30
–, integrity 15
–, nonhealing 40
–, regrowth 33
–, rupture 12, 30 f., 39 f.
–, trauma 39
tympanometer 15
tympanometry 15

U
ulcer 28
ultrasound imaging 14
utricle 3, 5

V
vagus nerve 24
vestibular canals 3
vestibular dysfunction 8, 21
–, neurological examination 16
vestibular nerve 16
vestibular nuclei 16
vestibular organ 5
vestibular system 16
vestibule 3
visual disturbances 16
voltage-gated calcium channels 4 f.

W
Waardenburg syndrome 20
white cats
–, deafness 20
white spotting 20

Y
yeast infections 21

2 The Nose and Nasal Sinuses

A
adenocarcinoma 74
adnexal tissue 62
adrenalin solution 58
airflow
–, conditioning 51
–, regulation 51
airstream symmetry 55
Alternaria 65, 67
amygdala 53
anemia
–, aplastic 78
anesthesia 57
–, monitoring of the depth 58
–, risks 61
arc-like effective stroke 62
aspergillosis 77
–, clinical signs 59, 65, 77
–, disseminated 65
–, nasal
–,–, systemic treatment 67
–, sinonasal
–,–, treatment 66
Aspergillus 64
–, fumigates 65
–, infection 54
–, plaques 59, 65, 77
aspiration of brownish-red fluid
–, repeated 75
atrophy 59
–, conchae 59, 65
axonemal tubule 52
2 The Nose and Nasal Sinuses

B
biopsy forceps 58
bird cages 65
blanket functions 52
blepharospasm 63
blood flow 52
bone resorption 69
Bordetella bronchiseptica 59, 63
brain damage 75
breed
–, brachycephalic 60, 62
–, dolichocephalic 62
bridge of the nose
–, fistula in the midline 62

C
calicivirus infection 64
Can*ine distemper* 64
Capillaria aerophila 68
cardiomegaly 52
chemosis 63
choanae 51, 58
–, fractures 76
chondrosarcoma 74
chorda tympani 69
ciliary beat 52
–, velocity 63
ciliary dysfunction
–, congenital 62
ciliary dyskinesia
–, primary 62 f.
ciliated cell 52
clefts
–, repair 61
closure, airtight 79
clotrimazole 66
cogulation disorders 78
cogulopathy
–, acquired 78
computed tomography (CT) 56, 75
–, positioning of the patient 56
conchae 51, 58
–, atrophy 59, 65
–, via bone resorption 63
–, ethmoidal 53
–, loss of normal maxillary and ethmoidal 74
–, minimal loss 68
congenital abnormalities 60, 62
congenital neural tube defect 62
conjunctivitis 63
contrast medium 56 f., 75
cor pulmonale 52
coumarin 78
cribiform plate 53
crust formation 64
cryptococcosis 67
Cryptococcus
–, staining 67

Cryptococcus neoformans 65
CT 56
cyst 62
–, nasal dermoid sinus 62
cytokines
–, proinflammatory 68
cytoreductive therapy 74
cytotoxic agents 71

D
dental abnormalities 55
dental root infections 77
depigmentation 55
depression 65
diagnostic imaging 56
diagnostic techniques
–, special 55
dog
–, brachycephalic 51
–, dolichocephalic 51
–, emaciated nose 60
–, sense of smell loss 55
dryness 69
–, pathological 55
dynein arms 52
–, defects 62
dyspnea 74
–, nasal obstruction 55
–, relief 61

e
ectoturbinate 51
depression 65
dentinal abnormalities 55
dentinal root infections 77
depigmentation 55
depression 65
diagnostic imaging 56
diagnostic techniques
–, special 55
dog
–, brachycephalic 51
–, dolichocephalic 51
–, emaciated nose 60
–, sense of smell loss 55
dryness 69
–, pathological 55
dynein arms 52
–, defects 62
dyspnea 74
–, nasal obstruction 55
–, relief 61

E
ectoturbinate 51
depression 65
dentinal abnormalities 55
dentinal root infections 77
depigmentation 55
depression 65
diagnostic imaging 56
diagnostic techniques
–, special 55
dog
–, brachycephalic 51
–, dolichocephalic 51
–, emaciated nose 60
–, sense of smell loss 55
dryness 69
–, pathological 55
dynein arms 52
–, defects 62
dyspnea 74
–, nasal obstruction 55
–, relief 61

ectoturbinate 51
emphysema
–, subcutaneous 75
endotracheal intubation 77
enilconazole 66
entorhinal cortex 53
epidermal tissue 62
epistaxis 54, 77
–, acute
–, management 77
–, causes 77
–, diagnostic plan 78
–, intermittent of unknown origin 79
–, recurrent 68
epithelium
–, ciliated respiratory 68
estrogen 78
ethmoid 51
extent of the destruction 65
external nose
–, bony case 51
–, cartilaginous parts 51
exudate
–, mucopurulent 54
Subject Index

F
facial deformity 61
feline calicivirus 63
feline herpesvirus-1 63
fibroma 72
fibrosarcoma 72
fistula 69
–, congenital cerebrospinal fluid 62
–, nasal-cutaneous 62
–, oronasal 65
–, result from extraction of a maxillary canine tooth 70
–, surgically closure 70
fistulogram 62
forebrain 53
foreign body 58
–, rhinitis 70
frontal bone
–, resorption 65
–, trauma 75
–, trephined opening 66
frontal sinus 51

G
gelatin sponge 79
glands
–, serous 52
goblet cells 52
granuloma
–, noncaseated epithelioid 70
–, sarcoidal 71
granulomatous infections 67
grayish-yellow material 66

H
hemophilia A and B 78
hemorrhagic discharge 74
–, intermittent 65
herpesvirus infection 64
hippocampus 53
histiocytosis 71
histological examination 73
homeostasis 79
host resistance 65
house dust 65
household plants 65
humidification 52
hypertrophy 59
hypothalamus 53
hypovolemic shock 76

I
incisive bones 51
infecting spores
–, number 65
inflammation 77
inflammatory tissue 68
intermittent rhinosinusitis 64
intracranial extensions 64
intranasal catheter 76
intraoral film 56
ipsilateral external carotid artery
–, ligation 77
K
Kartagener’s syndrome 62
keratitis 63
keratoconjunctivitis sicca
–, ipsilateral 69
L
lacrimal bones 51
lamina propria 52
Larmor frequency 57
leishmaniasis 78
Linguatula serrata 78
liver failure 78
lungs 61
lymphoma 78
lymphosarcoma 74
magnetic resonance imaging (MRI) 56 f., 75
maxillae 51
maxillary canine tooth 69
maxillary sinus 51
melena 77, 79
metachronous movement 52
microvilli 52
mouth inspection for abnormality 58
MRI 75
mucopurulent discharge 74
mucosa
–, destruction 65
–, focal proliferations 68
–, hypervascularization 72
–, nasal
–, lesions 54
–, pale-pink 77
–, respiratory
–, pseudostratified 52
–, thickening 72
–, underlying structures
–, destruction 65
–, white 77
mucosal cleaning 52
mucus blanket
–, overlying 52
mucus clearance
–, velocity 63
myelosuppressive drugs 78
The Nose and Nasal Sinuses

N
nasal alae 55
nasal bleeding 65, 74
nasal bone 51
 –, rectangular opening 79
nasal cavity 51
 –, abnormalities in morphology 59
 –, caudal part 68
 –, mucociliary clearance 63
 –, mucosa 71
 –, obstruction 55, 59
 –, tumor 74
nasal discharge 54 f.
 –, clear 62
 –, profuse mucopurulent 65
 –, serous 63
 –, unilateral mucopurulent 54, 70
nasal passage
 –, narrowing 70
nasal plane 51, 65
 –, congenital malformation 60
 –, depigmentation 71
 –, surgical removal 73
 –, swelling 71
 –, tumor 72
nasal polyps 59
 –, bilateral 68
 –, clinical signs 68
 –, extreme cases 68
 –, multiple proliferations 69
 –, rhinitis 68
 –, surgical removal 68
 –, unilateral 68
nasofrontal duct
 –, obstruction 75
 –, patency 75
nasolacrimal duct 53
neoplasma
 –, hematopoietic 78
newborn puppies
 –, herpes infection 64
nonscreen film 56
nostrils
 –, narrow 55
 –, narrowing 60
 –, primary bacterial infection 64
 –, widening 61

O
obstruction
 –, dyspnea 55
 –, temporary 76
 –, upper airway 61
ocular discharge
 –, serous 63
olfaction 51, 53
olfactory bulb 53
 –, cavity 62
olfactory cilia 53
olfactory cortex
 –, primary 53
olfactory epithelium
 –, removal 69
olfactory information
 –, processing 53
 –, transduction 53
olfactory nerves 53
olfactory receptor cells 53
olfactory receptor neuron 53
open-mouth breathing 55
open-mouth projections 56
orbit 65
osteosarcoma 74
otoscope 58
oxygenation 76
pain 54, 57, 65
 –, acute 54
 –, chronic 54
painful infection 64
palatine bone 51
palliative therapy 64
paranasal sinus 51
parasympathetic system 51
Pasteurella multocida 63
periciliary layer 52
periodontitis 63, 69
periostitis 65
pharynx
 –, nasal portion 51
phenoobarbital 77
pheromones 53
physical examination 54 f.
Pneumonyssoides caninum 68
primary venereal tumors 74
proliferation of tissue around the root of the canine tooth 70
protective reflex 54
pulmonary edema 52
radiation therapy 74
radiodense material 59
radiographic density 74
radiographic examination 61
 –, skull 56
radiographs 55
 –, rostrocaudal 56
regional lymph nodes 73
renal failure 78
respiratory activity
 –, increased energy use 60
respiratory cilia
 –, ultrastructural lesions 62
Subject Index

respiratory disease
 –, viral upper
 –, cat 63
respiratory resistance 52
restlessness 77
rhinitis
 –, allergic 72
 –, causes
 –, dental disease 69
 –, foreign bodies 70
 –, chronic 63
 –, IgE-based 72
 –, infectious 63
 –, mycotic 64
 –, nasal polyps 68
 –, neurogenic 69
 –, noninfectious 68
 –, nonspecific chronic 72
 –, obstructive 68
 –, parasitic 68
 –, primary bacterial 64
 –, proliferative 59
 –, viral
 –, dog 64
rhinoscopic removal 59
rhinoscopy 56 f., 64, 68, 70
 –, otoscope 58
rhinosinusitis
 –, intermittent 64
rhinosporidiosis 67
Rhinospordinium seeberi 67
rubbing of the nose 70

S
sagittal scan 57
sarcoidosis 70
sense of smell
 –, diminished 60
 –, loss 55
septal cartilage 51
septum 65
shearing force 52
shedding of virulent virus in carrier cats 64
shock
 –, signs 75, 77
sinus
 –, frontal 51
 –, congenital malformation 62
 –, fungus 65
 –, trauma 75
 –, tumor 74
maxillary 51
 –, paranasal 51
wall
 –, thickening 66
sinusitis
 –, infectious 63
 –, noninfectious 68
situs inversus 62
skin depigmentation 54
skull
 –, radiographic examination 56
sneezing 54, 74, 77
 –, causes
 –, inflammation 54
 –, local drying 54
 –, mechanical stimuli 54
 –, ferocious 70
 –, paroxysmal 63
sniffing sound 60
snoring 55
soft palate
 –, inspection 58
soft tissue contrast 57
soft tissue densities
 –, irregular 66
specific functional systems 53
squamous cell carcinoma 72, 74
Staphylococcus aureus 64
stenal recumbency 58
stridor 55
suction cannula 58
superimposition of structures 56
supine position 57
supraorbital process 51
–, osseous septae 51
symblepharon 63
sympathetic nervous system 51
T
telecope 58
 –, flexible fiberoptic cable 58
 –, light source 58
 –, suitable 58
thalamus 53
toxins 65
tracheostoma 55
tracheotomy 74, 76
trauma 76 f.
trigeminal chemosensory system 53
trigeminal system
 –, efferents 54
tumor 74, 77

U
ulceration
 –, gingival 63
ultrastructural abnormalities 62

V
vagal stimulation 58
vasoconstriction 51
vasodilatation 52
venous plexus 52
vidian nerve 52
viral culture 64
virus
–, immunization against 63
virus carriers 63
virus infection
–, cat-to-cat infection 63
–, chronic carriers 63
–, identification of carriers 64
virus vaccine
–, live, modified 63
visual guidance 57
vomeronasal organ 53
von Willebrand’s disease 78

3 The Pharynx

A
abscess 103
–, life-threatening 103
–, neck 105
adentinoma 94
aerophagia 95, 110
airway
–, life-threatening obstruction 100
–, obstruction 103
–, protection 84
Alzheimer’s disease 112
ameloblastinoma 94
angioleiomyoma 102
anisocoria 94
arch
–, palatoglossal 83
–, palatopharyngeal 83
arthritic changes 114
aspergillosis
–, nasal 99
aspiration pneumonia 89
atresia
–, choanal 93
– –, bilateral 93
– –, unilateral 93
atrophy
–, bone 104
auditory tube 83

B
balloon catheter 116
biopsy forceps 89
blindness
–, sudden 94
blood loss
–, severe 105
bloody mucous
–, drooling 103
bolus formation 87, 91
bone atrophy 104
brain damage 103
brain injury
–, traumatic 112

brain stem 106
buccopharyngeal membrane 93

canine adenovirus-2 99
canine distemper 99
canine parainfluenza virus 99
choanae
–, bilateral atresia 93
–, nasal cavity 83
–, new
– –, mucosal lining 94
choking 89
cleft lip and palate 91
cleft palate
–, cats 103
closed-mouth breathing 95
complex repetitive discharges 91
computed tomography (CT) 90
genital oropharyngeal cleft 98
contrast studies
–, preoperative 114
contrast videofluorography 91, 98, 110, 113 f.
coughing 89, 113
cranial laryngeal nerve 84, 106
cranial nerve
–, motor neurons 85
craniofaryngioma 91, 94
–, clinical signs 94
cricoid cartilage
–, caudal border 83
cricopharyngeal muscle 86, 110
–, relaxation 91
cricopharyngeal relaxation 84
Cryptococcus 99
–, staining 99

defense mechanism 113, 116
deglutition 83
depression 94
diagnostic imaging 90
Subject Index

diaphragm 111
dog
 –, brachycephalic 93
dorsal region
 –, including the NTS 85
dysphagia 88, 98, 106
 –, causes
 – –, central neurogenic lesions 112
 – –, muscular disorders 106, 110
 – –, neurogenic 106
 – –, obstructive disorders 112
 – –, pain 112
 –, esophageal 116
 –, management 116
 –, manometry 116
 –, myogenic 111
 –, oropharyngeal 92
 –, peripheral neurogenic 106 f.
 –, pharyngeal disease 89
 –, pharyngoscopy 116
 –, specific diagnostic techniques 114
 –, systemic diseases 113
dyspnea 93, 95, 104
 –, pharyngeal disease 88
 –, severe 95
dystrophy
 –, muscular 91, 110

E
edema 103
electromyography (EMG) 86
 –, continuous EMG recordings 87
emaciation 113
EMG 86
emphysema
 –, mediastinal 104
 –, subcutaneous 104
endoscope
 –, capable of 180° 89
 –, flexible with a working channel 106
 –, retroflexion 97
endoscopic grasping forceps 106
endotracheal intubation 105
 –, emergency 104
endotracheal tubes 89
epithelium
 –, ciliated columnar 96
esophageal musculature
 –, peristaltic contractions 84
esophagus 111
 –, smooth muscles
 – –, cat 85
eustachian tube 83
 –, opening 89

F
facial nerves 85
fauces
 –, pillars 84
faucial arch 84
feline calicivirus 95, 99
feline herpesvirus-1 95, 99
feline leukemia 101
fetid breath 97
fibrillation potential 91
fine needle aspiration biopsy 112
fistula formation 104
foreign body
 –, nasopharynx 97
frontal cortex 84

gagging 89
gargling 88
gastroesophageal junction 115
glands
 –, mucous
 – –, distended mucosal 101
glossopharyngeal nerve 84, 86
 –, transection 115
goblet cells 96

H
hand feeding 92
hematoma 103
hemostasis 100
hyoid bone 114
 –, injury 105
hyopharyngeal muscle 86
hypopituitarism 94

I
inspection 89
interneuronal network 84
interneurons 85
intrapharyngeal opening 83
 –, circular closure 83
 –, closing 95
involuntary regulation 106

L
laryngeal injuries
 –, penetrating 104
laryngeal muscle
 –, intrinsic 111
laryngopharynx 83
 –, caudal 105
larynx
 –, leakage of liquid or food into 91
limb muscles 111
lingual nerve 84
loss of sensory innervation 106
lung metastasis 112
lupus erythematosus 113
lymph nodes
–, retropharyngeal 112
lymphoma 101

M
magnetic resonance imaging (MRI) 90
malignant melanoma 101
manometry
–, dysphagia 116
mast cell tumor 102
masticatory muscles 111
megaesophagus 111
membrane-formed bone
–, ossification 91
middle ear polyp 96
mononuclear cell inflammation 111
motor innervation
–, loss 110
motor neuron disease 112
motor paralysis
–, extraocular 94
mucosa
–, focal hypertrophy 96
–, lesions 116
–, nasopharyngeal
–, inflammatory irritation 95
–, sensitive 98
–, pharyngeal
–, wounds 104
multiloculated cyst 94
muscle fibers
–, progressive loss 111
muscular dystrophy 106
myasthenia gravis 106, 111, 113
–, acquired 111
mylohyoid muscle 83
myopathy 111

N
narrow pharynx 93
nasal aspergillosis 99
nasal cavity
–, choanae 83
nasal discharge 92, 113
nasopharyngeal area
–, pain 95
nasopharyngeal carcinoma 90
nasopharyngeal obstruction 88
nasopharyngeal polyp 96
–, clinical signs 96
–, removal 96
nasopharyngeal stenosis 97
nasopharyngitis 95
–, primary bacterial 95
–, viral 95

P
palate
–, primary 91
–, rostral hard
–, incomplete 92
–, secondary 91
–, soft 83
–, cleft
–, surgical repair 92
–, congenital malformation 92
–, fresh lacerations 105
–, hypertrophy 92
–, hypoplasia 91 f., 98, 116
–, overlong 93
–, tensor muscle 83, 85
palatoglossal arch 83
palatopharyngeal arch 83
palatopharyngeal closure 84
Parkinson’s disease 112
pemphigoid
–, mucous membrane 113
peripharyngeal masses 112
peristalsis
–, secondary 115
phagocytosis 111
pharyngeal constrictor muscles
–, peristalsis 84
pharyngeal injury
–, blunt 103
pharyngeal isthmus 83
–, function 93
pharyngeal mucosa 101
pharyngeal muscle 111
Subject Index

- contraction 113f.
- timing 107
- electromyography 91, 116
- sequence of activity 107
pharyngeal pain 89
pharyngeal plexus 86
pharyngitis 95
 - acute 99
 - chronic 100
pharyngoscopy 89
 - dysphagia 116
physical examination 88
pica 100
pneumothorax 104
polymyositis 113
positive sharp waves 91
pressure transducers 116
pterygoid muscle 85
pyriform recess 105

R
radiographic examination 104, 112
radiographs 114
- laterolateral 102
- neck 104
Rathke's pouch tumor 94
reflux of food 115
regurgitation 89, 93, 98, 113
reticular formation 85
- lateral
 - around the nucleus ambiguus 85
retrobulbar region
- injury 105
retroflexion endoscope 97
rostral digastric muscle 85

S
salivation 95
seizures 94
sella turcica 94
Senn retractor with blunt prongs 89
sensory loss 106
sequential activity 106
signs of shock 103f.
skull
 - base
 - fracture 103
SLN 84
sneezing
 - reverse 83, 95, 97
snoring 92, 95, 97
soft tissue injuries 103
solitary nucleus 106
solitary system 84
solitary tract and nucleus (NTS) 84
somnolence 94
sound mimicking 95
sphincter
 - relaxed cranial esophageal 114
squamous cell carcinoma 101
stimulation via peripheral pathways versus central pathways 106
strabismus 94
Streptococcus
 - beta-hemolytic 99
stridor
 - snoring 88
 - wheezing 88
stylohyoid muscle 85
stylopharyngeal muscle 86
superior laryngeal nerve (SLN) 84
 - transection 107
surgical exploration 104
swallowing 83
 - afferents 84
 - buccopharyngeal 85
 - central pattern generator 84
 - master neurons 85
 - contributions of the glossopharyngeal nerve and the pharyngeal branch of the vagus nerve 86
 - difficulties 106
 - dynamics
 - classification 116
 - irrespective of eating 83
 - movements 114
 - painful 89
 - pharyngeal
 - central pattern generator 107
 - duration 107
 - pharyngeal pain 99
 - regulation 87
 - repeated 97
 - stages
 - esophageal 84, 110
 - oral 84, 110
 - oral preparatory 84
 - pharyngeal 84, 110
swallowing center 84, 112

T
thyroid tumor 112
thyropharyngeal muscle 86
tonsillar crypt 83
tonsillar fossa 83
tonsillectomy 100
tonsillitis 99
 - chronic 100
tonsils 84
 - enlarged 101
 - palatine 83
 - cats 83
 - tonsillectomy 100
tracheotomy 104
trauma
 - causes
4 The Larynx

A
abduction during expiration 161
absscess 134
adduction during inspiration 161
adenocarcinoma 138
administration of oxygen 160
afferent impulses 121
air passage
–, restoration 149
air pockets 127
airway obstruction
–, caused by vocal folds 148
–, management 141, 144
anemia 125
anesthetic spray 143
aspiration 152, 161
atrophy
–, denervation 154
–, neurogenic 157
axonal degeneration 153
–, acute 153
–, chronic 153
–, distal 153

B
biopsy material
–, examination 137
bipolar needle electrode 128
blood loss from the mouth 145
blunt injury 142
Bordetella bronchiseptica 133, 135
brachycephalic airway obstructive syndrome 131
brachycephalic breed 128
brachycephalic dogs 130

C
canine adenovirus-1 133
canine adenovirus-2 132 f.
canine herpesvirus 133
canine parainfluenza virus 132 f.
canine reovirus-1, -2, -3 133
carcinoma 138
cartilage 121
–, arytenoid lateralization 161
–, dorsolateral nasal
–, flaccid 131
–, fractures 145
–, lack of sturdiness 152
–, laryngeal
–, calcification 127, 135
–, mucosal coverage 145
–, rigidity 130
–, thyroid
–, compressing 147
cauterization 132
central nervous system
–, heritable and sporadic disorders 152
central respiratory centers 125
chemoreceptors
–, CO₂ 122
–, O₂ 122
–, peripheral 125
chemotherapy 140
choke chain 143, 147
choke collar 132
chondroma 138
chondrosarcoma 138
chromatolysis 157
circulation
–, insufficient 125
Subject Index

closure
–, bilateral 121
–, glottic 121
–, reflex 161
complex repetitive discharges 128
computed tomography (CT) 127, 139
congenital deformities 128 f., 131
cough 125, 132, 142
–, action of the glottis 122
–, defense mechanism 122
–, dry 124, 133
–, frequency 125
–, onset 125
–, productivity 125
–, sound 125
cough reflex 122
cranial nerve receptors
–, stimulation 161
cranial tibial muscles 153
cricoarytenoid muscles
–, dorsal 154
cricothyroid muscles 149
cross innervation 123
cyanoosis 160
cystic masses 127
cysts
–, bilateral 131
–, laryngeal 137
cytological diagnosis 140

d
defense mechanisms 122, 161
degenerative neurogenic diseases 147
denervation atrophy 154
denervation potentials 157
diagnostic imaging 127
digestive chambers 154 f.
diminished endurance 125
disappointing growth 128
dorsal recumbency 149
drainage 135
dysfunction 161
–, unilateral 146
dysphagia 143, 161
dyspnea 124 f., 132, 138, 141 f., 146–148
–, causes
–, abnormal hemoglobin 125
–, anemia 125
–, hypercapnia 125
–, hypoxemia 125
–, insufficient circulation 125
–, insufficient oxygen 125
–, insufficient ventilation 125
–, extreme 160

e
ECG monitoring 144
edema 127, 133, 142
–, caused by irritation 152
–, glottis 132
–, laryngeal 133, 137
efferent innervation 121
electrical pulses 161
electromyography (EMG) 121, 127, 135, 153, 155,
157, 160
–, additional recordings 123
–, stimulation-evoked 122
emergency 145
–, intubation 133
EMG 121
emphysema
–, mediastinal 144
–, subcutaneous 143 f.
endotracheal intubation 144, 160
–, emergency 149
endotracheal tube
–, incautious insertion 143
–, replacement by a tracheal cannula 138
–, sterile 137
endurance
–, lack of 138
enlargement 139
epiglottis
–, flaccid 131
–, removal 140
–, tear 145
esophagus
–, integrity 144
extralaryngeal extension 139

f
feline calicivirus 132
–, vaccine 132
feline herpesvirus-1 132, 146
–, vaccine 132
fever 132
fibrillation potentials 128
fibropapilloma 138
fibrosarcoma 138
fine-needle aspiration biopsy 127, 140
fracture 142
–, cartilage 145
–, discontinuity of the laryngeal cartilages 143
–, hyoid bone 143
functional disorders 128, 146 f., 149, 151, 153,
155, 157, 159, 161
functions 121

g
glands
–, moisten the laryngeal mucosa 133
glomus
4 The Larynx

L
labored breathing 125
laryngeal chemoreflexes 121
laryngeal collapse 131
laryngeal inlet
–, widening 149
laryngeal innervation
–, neurophysiology 121
laryngeal masses
–, benign 137
laryngeal muscles
–, extrinsic 121
–, intrinsic 121
–, electromyography 127
–, innervation 147
–, neurogenic atrophy 157
laryngeal nerve
–, cranial 121, 161
–, electrical stimulation 161
–, bilateral 161
–, unilateral 161
–, external branch 149
–, interruption 146
–, recurrent 121, 146
–, interruption 146
–, progressive degeneration 157
–, trauma 147
–, Wallerian degeneration 157
–, superior 146
–, unilateral recurrent
–, neurectomy 122
laryngeal sacculles 131
laryngeal ventricles 131
–, eversion 131
laryngectomy
–, total 140
laryngitis 132, 147, 161
–, acute infectious 132 f.
–, acute of non-infectious origin 133
–, chronic 134 f.
–, granulomatous 134
–, idiopathic 132
–, in laryngeal paralysis 135
–, unknown origin 134
–, irreversible damage 132
–, recurrent 152
–, therapy 132
laryngomalacia in infants 131
laryngoscope 127
laryngoscopy 126, 136, 139, 142, 153
lazy vocal fold 146
leakage of fluid and food
–, prevention 152
leiomyoma 138
lidocaine 161
lipoma 138
listlessness 138

H
harness 142
heart failure 125
hematoma 141–142
hemilaryngectomy 140
hemoglobin
–, abnormal 125
higher central nervous systems 122
hoarseness 132 f., 136, 138, 147
hospitalization 145
hyoid bone
–, fracture 143
hypercapnia 125
hyperthermia 126
hypoplasia 130, 152
hypoxemia 125

I
impairment of motor function 146
incision on the midline through the thyroid cartilage 137
incision on the ventral midline 137
injuries
–, penetrating 141, 144
innervating nerves
–, one-by-one cutting 123
inspection 126
inspiration
–, forced 160
intrinsic laryngeal muscles
–, dog
–, supplementary innervation 122

K
kennel cough 132
Subject Index

lymph nodes
 –, enlarged 139

M
 magnetic resonance imaging (MRI) 127, 139
 mast cell tumor 138
 mechanoreceptors 121
 melanoma 138
 mild dehydration 133
 motor innervation 121
 motor neurons
 –, diseases 152
 –, loss 157
 mucosa
 –, color 125
 –, epiglottic
 –, thickened 134
 –, erosions 132
 –, laryngeal
 –, sensory branches 140
 –, sensory loss 146
 –, swelling 132
 –, thickening 134
 mucosal continuity 144
 mucosal coverage of the cartilage 145
 muscles denervation 153
 muscles involved in swallowing
 –, contraction 161
 muscular disease 127
 muscular weakness syndrome 146
 myoneural junction disease 146
 myxochondroma 138

N
 neck
 –, radiography 144
 necropsy 154
 nerve paralysis
 –, unilateral recurrent 143
 nerve stimulation studies 123
 nerves
 –, ruptured 148
 neurogenic degenerative diseases 152
 neuromuscular system 121
 nodular lesions 134
 normal activity 127
 nucleus
 –, ambiguus 121, 146
 –, histological studies 156
 –, solitarius 121

O
 obstruction 128
 –, airway
 –, caused by vocal folds 148
 –, management 141, 144
 –, life-threatening 133
4 The Larynx

rhabdomyoma 138
rhabdomyosarcoma 138
rheumatoid arthritis 146
rima glottidis 126
scar tissue retraction 148
sedation 160
sensors
–, chemical 121
sensory nerves 152
signs of shock 141, 144
single granulomatous mass 134
spasm 160 f.
–, functional 160
– –, dogs being trained to attack a man 160
– –, dogs undergoing severe training 160
sphinx posture 126
stimulation
–, chemical 121
–, mechanical 121
sting of a bee 133
stoma 141
stress 126
stridor 125, 147, 153
–, expiratory 128
–, inspiratory 128
–, laryngeal 125
– –, changing 125
stridorous breathing 132, 135 f., 138
supplementary innervation 123
surgery complications 152
surgical lateralization 147
sutures
–, tearing 152
– –, prevention 152
swallowing 161
–, during purring 134
symmetry of the malformations 130

T
tachypnea 146
tear in epiglottis 145
thermal sensors 121
thorax
–, radiography 142, 144
tongue
–, laceration 142
trachea
–, integrity 144
tracheal cannula 133, 138, 142
tracheobronchitis
–, eosinophilic 135
tracheostoma 134
–, permanent 132, 149
–, standard permanent 141
tracheostomy 133, 137, 142, 144 f., 147, 149
–, permanent 140
–, temporary 140
trauma 141
–, articulations between the hyoid bones 143
tumor 138 f., 146
–, clinical signs 138
–, history 138
–, imaging 139
–, therapy 140
ultrasonography 127, 137, 139
upper airways
–, obstruction 125
ventilation
–, insufficient 125
ventral midline approach 137
vesicles 132
vocal fold
–, abuse 136
–, movement
– –, paradoxical 161
–, obstructing the airway 148
–, paralyzed
– –, lateralization 147
–, webbing 129
vocalization
–, impaired 135
–, movements of the glottis 122
voice
–, breaking 138
–, functional disorders 160
–, hoarse 133, 136, 138
–, loss 134, 146
–, no loss 147
wallerian degeneration 153, 155, 157
webbing 129, 137, 145
wheezing 125
wound
–, internal penetrating 145
–, near the tonsil 145
–, under the tongue 145
5 The Trachea and Bronchi

A
accentuated expiration 188
adenocarcinoma 194
adequacy of oxygenation 173
afferent nerves 168
air bronchogram 172
airway management 199
airway pressure 169
alveolar washing 173
ammonium disinfectants
–, quaternary 185
anastomosis 195, 198
–, cartilage-to-cartilage 195
anomalies in the lumen 171
anxiety 181
artificial ventilation 200
aspergillosis 186
asthma 188
atropine sulfate 183
B
bacteria 185
biopsy 194 f.
biopsy forceps 173
biopsy of elevations 187
blanket functions 168
Bronchopneumonia 172, 184 f., 189, 193, 203
Bronchoscopy 174
–, flexible 173
–, rigid 173
–, anesthesia risks 173
–, oxygen administration 173
–, vagal stimulation 173
brushing 187

C
canine adenovirus-1, -2, -3 185
canine adenovirus-2 184
canine herpesvirus 185
canine parainfluenza virus 184
Canula
–, anchored with a soft cord around the neck 203
–, consisting of an outer and an inner part 203
–, rigid 173
–, sutured to the skin 203
–, tracheal 203
cartilage
–, destruction 201
–, hyaline
–, C-shaped rings 167
cartilage-to-cartilage anastomosis 195
cartilaginous rings 191
catheter
–, flexible 173
cells
–, basal 167
–, ciliated 167
–, goblet 167
–, intermediate 167
–, squamous 193
chondroma 194
chondrosarcoma 194
cilia
–, admixed with microvilli 167
–, electron microscopy 184
–, motion 168
ciliary beat 167
ciliary dysfunction
–, congenital 183
ciliary dyskinesia
–, primary 183
ciliary lesions 184
computed tomography (CT) 194, 198
cough 168 f., 194, 206
–, caused by stimulation of the vagus 169
Subject Index

- trachea 175, 180
 hypoxia 196
 - during sleep 202

I
 inbreeding 180
 inspired air
 - conditioning 167
 - cooled 167
 - warmed 167
 interaction of reflexes 168
 internal stent 182
 interneuronal network of the reticular formation 169
 intrathoracic avulsion 197
 irritants
 - chemical 168
 - continuous mechanical 168
 ischemic injury 201

J
 jugular vein
 - compressing 203

K
 Kartagener’s syndrome 184
 kennel cough 184
 Klebsiella 186

L
 lamina propria 167
 laryngeal muscles 168
 laryngeal nerve
 - recurrent 195, 197
 - pressure 201
 laryngoscopy 200
 larynx
 - hypoplasia 203
 - physical examination 170
 - stenosis 201, 204
 lavage
 - bronchial 171, 185, 187
 - bronchoalveolar 171
 leakage of saliva 193
 leiomyoma 194
 levamisole 187
 ligament
 - annular
 - disruption 198
 - cricoid 202
 - tracheal 181
 lipoma 194
 lumen during inspiration
 - enlargement 167
 lung
 - physical examination 171
 lung edema 201
 lung emphysema 188
 lung failure
 - progressive 189
 lung fibrosis 174
 lung function failure 170
 lung infiltrates 193
 lung lobe consolidation 184
 lung segment
 - consolidation 192
 lung tissue
 - loss of elasticity 190
 lymphoma
 - malignant 194

M
 macroaggregated albumin
 - 99technetium-labeled 168
 magnetic resonance imaging (MRI) 198
 mast cell tumor 194
 medulla oblongata 168
 mucociliary blanket 167
 mucociliary dysfunction
 - prognosis 184
 mucociliary transport rate 168
 mucopurulent material 171
 mucosa
 - disruption 198
 - laryngeal
 - - defective sensory innervation 194
 - - prone to develop edema 200
 - tracheal
 - - sensitivity 170
 - - swollen 193
 mucosal cleaning 167
 mucosal lining 171
 mucus
 - bilayered blanket 168
 - excessive 201, 203
 - foamy in the pharynx 201
 mycoplasma 185 f.

N
 nasal obstruction
 - permanent 204
 Nd:YAG laser 199
 negative pressure in the trachea 203
 normal respiratory sound 171

O
 obstruction of the lumen 171
 obstructive nodules 187
 one lung ventilation 201
 Oslerus osleri 186
 osteochondroma 194
 outer layer 168
 oxygen administration 173, 196, 201 f.
5 The Trachea and Bronchi

P
pale
–, soft
–, lifting 201
palliative measure 195
Pasteurella 187, 189
periciliary layer 168
phenobarbital 183, 191
pleura
–, physical examination 171
pneumomediastinum 196
pneumothorax 196
prednisolone 187, 189
pressure exerted by the wall of the tube 201
prolonged panting after exercise 180
–, without stridor 180
Pseudomonas 186
pulmonary gas exchange 201
pulse administration 173
punctures
–, small 196

R
radiography 172, 188, 191, 193 f., 196–198
–, dorsoventral view 172
–, lateral view 172
radiolucency of the lung field 188
rapid respiration 180
rescue management 200
respiratory movements 170
respiratory muscles 168, 170
respiratory sound 171
–, bronchial 171
–, moist 180
restlessness 191
rhonchi
–, musical 171
–, nonmusical 171, 192
ribs
–, fractured 196
round opening in the trachea 203

S
scar tissue formation 198
secondary healing 197
signs of shock 196
Simonsiella 193
situs inversus 184
skin incision
–, transverse 203
skin wound 196
squamous cell carcinoma 194
Staphylococcus 186
stenosis
–, laryngeal 201, 204
–, short 199
–, tracheal 183, 196–198
–, treatment 198
stimuli
–, chemical 169
–, tactile 169
–, variable threshold 169
Streptococcus 186 f.
stridor 170
–, expiratory 194
–, inspiratory 194
stridorous breathing 168 f.
submucosal nodules 186
suffocation 201
surfactant
–, measurement 173

T
t-Tube 197 f., 200, 205
teaht penetrating the trachea 195
telescope 173 f.
temporary bypass 202
tension sutures 195
terbutaline 189
thoracic volume 170
thoracic wall
–, physical examination 170
thoracotomy
–, lateral 198
thorax
–, percussion 171
–, physical examination 170
–, radiographs 189
trachea
–, caudal 186
–, cervical
–, –, radiographs 171
–, –, trauma 195 f.
–, –, collapse 181
–, –, evaluation 172
–, –, surgical treatment 182
–, –, videofluoroscopic diagnosis 182
–, construction 167
–, –, cranial 193
–, –, diameter 172, 180
–, –, hypoplasia 175, 180
–, –, lacerating 199
–, –, necrosis 183
–, –, neoplasia 169
–, –, obstruction 169
–, –, physical examination 170
–, –, prolapse of the dorsal ligament 189
–, –, radiography 180, 182
–, –, resection 196
–, –, dehiscence 197
–, –, rupture 197
–, –, stenosis 196–198
–, –, segmental 183
–, –, support rings sutured on the outside 183
–, –, thoracic 172
Subject Index

- trauma 197
- tumor 194
- primary 194
tracheal images 172
tracheal lumen
- cytology of the material 193
tracheal membrane plication
- dorsal 182
tracheal muscle 167
- broad 181
tracheal opening
- maintenance 203
tracheal rings 175
- cleavage between two rings 196
- congenital defect affects the shape 181
- no collapse 190
tracheitis 184
- causes
- acquired deformity 184
- allergy 184
- aspiration 193
- congenital deformity 184
- foreign body 184
- idiopathic 184
- trauma 184
- therapy 184
- viral
- treatment 185
- antibiotic 186
tracheobronchial tree
- foreign bodies 191, 193
tracheobronchitis
- bacterial 186
- eosinophilic 187
- therapy 187, 189
- fungal 186
- infectious 187
- noninfectious 187
- parasitic 186
- diagnosis 186
- primary 186
- viral 185
tracheoscopy 197
tracheostoma
- permanent 200, 203
- creation 204
tracheostomy 192, 200, 202
- indications 202
trauma 195
- blunt
- protection 196
tube displacement
- complication 204
tube inserting
- main stem bronchus 201
tumor 194

6 Cranial Neuralgias and Facial and Trigeminal Paralysis

A
Aujeszky’s disease 209
auricle
- ipsilateral
- sagging 210

B
band around the muzzle 211
brain examination 209

C
canine dropped jaw syndrome 211
carbamazepine 209

F
facial muscles
- dysfunction 210
- electromyographic examination 211

H
hyposensitivity of the face 209
6 Cranial Neuralgias and Facial and Trigeminal Paralysis

I
inability to close the mouth 211
inability to eat or drink without assistance 211

L
laboratory studies 209
lower eyelid
–, ipsilateral drooping 210
lower lip
–, ipsilateral drooping 210

M
middle ear
–, chronic destructive inflammation 211
–, tumors 211

N
neck muscles
–, cramping 209
nerve injury during surgery 210
neralgia
–, glossopharyngeal 209
–, trigeminal 209
–, restricted to one side of the face 209
neuritis of the trigeminal nerve 209

P
pain 209
–, agonizing 209
–, complete remission 210
–, paroxysmal 209
–, persistent 209
–, pharyngeal 209

paralysis
–, facial 210
–, unilateral 210
–, trigeminal 211
–, self-limiting 211
pharyngeal inspection 209
phenytoin in combination with carbamazepine 209

R
radiographic examination 209

S
saliva
–, leaking 210
salivation 209
screaming 209
self-mutilation 209

T
trauma 210
trigeminal nerve
–, motor branches 211
–, sensory part
–, neuritis 209
trigger point 209
tumor
–, middle ear 211

U
upper lip
–, ipsilateral drooping 210